Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)
\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)
\(3B+B=\left(-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\right)+\left(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\right)\)
\(4B=-1-\frac{1}{3^{51}}\)
\(B=\frac{-1-\frac{1}{3^{51}}}{4}\)
Đặt S=1+3+32+33+...+350
3S=3+32+33+...+351
3S-S=3-3+32-32+..350-350+351-1
2S=351-1
S=(351-1) :2
nhân 3 cả vế lên rồi trừ cho vế trước sau đó chia 2 thì ra
Bài 1 : a, Ta có : (-1)3 . (-1)5 . (-1)7 . (-1)9 . (-1)11 . (-1)13
= (-1)(-1).(-1).(-1).(-1).(-1)
= (-1)6
= 1
b, (1000 - 13) . (1000 - 23) . (1000 - 33) . ... . (1000 - 503)
= (1000 - 13) . (1000 - 23) . (1000 - 33) .... (1000 - 103).......(1000 - 503)
= (1000 - 13) . (1000 - 23) . (1000 - 33) .... 0 ........(1000 - 503)
= 0
Bài 2 :
Đặt A = 12 + 22 + 32 + ... + 102 = 385
=> 22(12 + 22 + 32 + ... + 102) = 22.385
=> 22 + 42 + 62 + ..... + 202 = 4.385
=> 22 + 42 + 62 + ..... + 202 = 1540
Vậy 22 + 42 + 62 + ..... + 202 = 1540
bài 3:
a) 2S=2+22+23+24+...+251
2S-S=251-1
mà 251-1<251
Suy ra:s<251
thay x=1
f(x)=1+1+1+1+....+1(52 số 1)
f(x)=52
thay x=-1
f(x)=(1+-1)+(1+-1)+(1+-1)+.........+(1+-1) (26 cặp)
=>f(x)=0
Thay x=1, ta có:
f(1)=1+1+1+1+.................+1+1 (có 52 số 1)
f(1)= 52
Thay x=-1, ta có:
f(-1)=(1-1)+(1-1)+.................+(1-1)
f(-1)=0+0+0+0+.................+0 (có 26 số 0)
f(-1)=0
a) \(\left[\frac{1}{3}\right]^{50}.\left(-9\right)^{25}-\frac{2}{3}:4\)
\(\Rightarrow\frac{1}{3^{50}}.\left(-9\right)^{25}-\frac{2}{3}.\frac{1}{4}\)
\(\Rightarrow\frac{\left(-9\right)}{9^{25}}-\frac{1}{6}\)
\(\Rightarrow1-\frac{1}{6}\)
\(\Rightarrow\frac{6}{6}-\frac{1}{6}=\frac{5}{6}\)
Vậy = 5/6
_Minh ngụy_
a) ( 1000-13) . ( 1000-23) . ( 1000-33) ...( 1000 -503)
\(=\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot...\cdot\left(1000-10^3\right)\cdot.....\cdot\left(1000-50^3\right)\)
\(=\left(1000-1^3\right)\cdot\left(100-2^3\right)\cdot...\cdot\left(1000-1000\right)\cdot...\cdot\left(1000-50^3\right)\)
\(=\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot......\cdot0\cdot......\left(1000-50^3\right)\)
\(=0\)
b) (1/125-1/13) . (1/125-1/23).( 1/125-1/33)...( 1/125-1/253)
\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{5^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{125}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot....\cdot0\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=0\)