K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2018

\(\sqrt{10-4\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

 \(=\sqrt{2^2-2.2.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{3^2-2.3.2\sqrt{6}+\left(2\sqrt{6}\right)^2}\)

\(=\sqrt{\left(2-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)

\(=-\left(2-\sqrt{6}\right)-\left(3-2\sqrt{6}\right)\)

\(=-2+\sqrt{6}-3+2\sqrt{6}\)

\(=-5+3\sqrt{6}\)

5 tháng 8 2018

\(\sqrt{16-6\sqrt{7}}+\sqrt{32-8\sqrt{7}}\)

\(=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}+\sqrt{2^2-2.2.2\sqrt{7}+\left(2\sqrt{7}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(2-2\sqrt{7}\right)^2}\)

\(=3-\sqrt{7}-\left(2-2\sqrt{7}\right)\)

\(=3-\sqrt{7}-2+2\sqrt{7}\)

\(=1+\sqrt{7}\)

30 tháng 8 2020

Đây là rút gọn hỏ bạn ?

a)

Rút gọn căn thức bằng cách chia nhỏ phần trong căn thức thành tích của các nhân tử đã biết, giả sử đó là các số thực dương.

2√6−√10−4√15+4√3

b)

Câu này không rút gọn được á bạn

AH
Akai Haruma
Giáo viên
14 tháng 6 2019

Lời giải:

a)

\(\sqrt{8+2\sqrt{15}}+\frac{2}{\sqrt{5}+\sqrt{3}}=\sqrt{3+5+2\sqrt{3}.\sqrt{5}}+\frac{2}{\sqrt{5}+\sqrt{3}}\)

\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\frac{2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}=\sqrt{3}+\sqrt{5}+\frac{2(\sqrt{5}-\sqrt{3})}{5-3}\)

\(=\sqrt{3}+\sqrt{5}+\sqrt{5}-\sqrt{3}=2\sqrt{5}\)

b)

\(\sqrt{7+2\sqrt{6}}+\frac{6-2\sqrt{6}}{\sqrt{6}}-\sqrt{54}=\sqrt{6+1+2\sqrt{6}.\sqrt{1}}+\sqrt{6}-2-3\sqrt{6}\)

\(=\sqrt{(\sqrt{6}+1)^2}+\sqrt{6}-2-3\sqrt{6}\)

\(=\sqrt{6}+1+\sqrt{6}-2-3\sqrt{6}=-(\sqrt{6}+1)\)

14 tháng 6 2019

\(a.\sqrt{8+2\sqrt{15}}+\frac{2}{\sqrt{5}+\sqrt{3}}\\ =\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{3}+3}+\frac{2}{\sqrt{5}+\sqrt{3}}\\ =\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\frac{2}{\sqrt{5}+\sqrt{3}}\\ =\sqrt{5}+\sqrt{3}+\frac{2}{\sqrt{5}+\sqrt{3}}\\ =\frac{\left(\sqrt{5}+\sqrt{3}\right)^2+2}{\sqrt{5}+\sqrt{3}}\\ =\frac{8+2\sqrt{15}+2}{\sqrt{5}+\sqrt{3}}\\ =\frac{10+2\sqrt{15}}{\sqrt{5}+\sqrt{3}}=\frac{2\sqrt{5}\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=2\sqrt{5}\)

a: \(=\sqrt[3]{216}-\sqrt[3]{-1331}=6-\left(-11\right)=17\)

b: Đặt \(A=\sqrt[3]{10\sqrt{5}-25}-\sqrt[3]{10\sqrt{5}+25}\)

\(\Leftrightarrow A^3=10\sqrt{5}-25-10\sqrt{5}-25+3\cdot A\cdot\sqrt{-125}\)

\(\Leftrightarrow A^3=-50-15A\)

\(\Leftrightarrow A^3+15A+50=0\)

hay \(A\simeq-2.405\)

31 tháng 7 2017

\(\sqrt{25-4\sqrt{6}}=\sqrt{\left(2\sqrt{6}-1\right)^2}=2\sqrt{6}-1\)

\(\sqrt{16-8\sqrt{3}}=\sqrt{\left(2\sqrt{3}-2\right)^2}=2\sqrt{3}-2\)

\(\sqrt{17+12\sqrt{2}}=\sqrt{\left(2\sqrt{2}+3\right)^2}=2\sqrt{2}+3\)

\(\sqrt{21+6\sqrt{6}}=\sqrt{\left(\sqrt{3}+3\sqrt{2}\right)^2}=\sqrt{3}+3\sqrt{2}\)

31 tháng 7 2017

Bạn có thể giải chi tiết hơn dc ko ?

18 tháng 7 2019

\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)

\(=\sqrt{\frac{6-2\sqrt{5}}{2}}+\sqrt{\frac{6+2\sqrt{5}}{2}}\)

\(=\sqrt{\frac{5-2\sqrt{5}+1}{2}}+\sqrt{\frac{5+2\sqrt{5}+1}{2}}\)

\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{5}-1}{\sqrt{2}}+\frac{\sqrt{5}+1}{\sqrt{2}}\)

\(=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\frac{\sqrt{2}.\sqrt{2}.\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

19 tháng 8 2017

\(\left(\dfrac{3\sqrt{2}+6}{\sqrt{12}+2}-\dfrac{\sqrt{54}}{3}\right).\dfrac{a}{3}=-1\)

\(\Leftrightarrow\left[\dfrac{\sqrt{6}\left(\sqrt{3}+1\right)}{2\left(\sqrt{3}+1\right)}-\dfrac{3\sqrt{6}}{3}\right].\dfrac{a}{\sqrt{6}}=-1\)

\(\Leftrightarrow\left(\dfrac{\sqrt{6}}{2}-\sqrt{6}\right).\dfrac{a}{\sqrt{6}}=-1\)

\(\Leftrightarrow\sqrt{6}\left(\dfrac{1}{2}-1\right).\dfrac{a}{\sqrt{6}}=-1\)

\(\Leftrightarrow-\dfrac{1}{2}.a=-1\)

\(\Leftrightarrow a=2\)

Vậy a=2

19 tháng 8 2017

cảm ơn

12 tháng 9 2017

Giúp mk đi đang cần rất gấp làm đc câu nào hay câu ấy

9 tháng 8 2020

BAnh ơi cho e hỏi mấy bài này ở sách nào vậy anh ơi? e muốn mua sách này chỉ giúp e với, cảm ơn anh

17 tháng 8 2016
Cái đề đọc không được