Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3A=3^2+3^3+....+3^{101}\)
\(3A-A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+......+3^{101}-3\)
\(2A=3^{101}-3\)
A = \(\frac{3^{101}-3}{2}\)
\(2^{50}\left(A.2+1\right)=2^{50}.\left(\frac{3^{101}-3}{2}.2+1\right)=2^{50}.\left(3^{101}-2\right)\)
A = 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + ... + 3101
3A - A = 3101 - 3
2A = 3101 - 3
=> 250(3101 - 3 + 1 )
= 250.3101 - 2
A=1+2+22+......+2100
=>2A=2+2223+......+2100+2101
=>2A-A=(2+22+23+....+2101)-(1+2+22+.....+2100)
=>A=2101-1
B=3+32+...+350
2B=32+33+..+351
2B-B=(32+33+......+351)-(3+32+...+350)
B=351-3
34.x+4 = 81x+3 <=> 34.x+4 = 33.x+9 <=> 4.x+4 = 3.x+9 <=> 4.x - 3.x = 9-4 <=> x=5
Mk chỉ làm bài tính tổng thôi nhé!!!
A= 1+2+2^2+2^3+...+2^50
A.2= 2+2^2+2^3+...+2^50+2^51
A.2-A= (2+2^2+2^3+...+2^50+2^51)-(1+2+2^2+2^3+2^4+...+2^50)
A= 2^51-1
Vậy A= 2^51-1
B= 5+5^2+5^3+5^4+5^5+...+5^200
B.5= 5^2+5^3+5^4+...+5^200+5^201
B.5-B=5^201-5
B.4= 5^201-5
B= (5^201-5):4
Vậy B= (5^201-5):4
\(A=1+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{101}\)
\(\Rightarrow A=2A-A=\left(2+2^{101}\right)-\left(1+2^2\right)=2^{101}-3\)
Ta có \(2^{50}.A+1=2^{50}.\left(2^{101}-3\right)+1=2^{151}-2^{50}.3+1=....\)
Chắc là n = 150
A = 1+2+22+23+....+2100
2A = 2+22+23+24+...+2101
2A - A = 2101 - 1
=> A = 2101 - 1
=> A + 1 = 2101
=> 250.(A + 1) = 250.2101 = 2151
Mà 250.(A + 1) = 2m
=> 2151 = 2m
=> m = 151
1.
1+2+3+...+99+100
=[(100-1):1+1]x[(100+1):2]
=100x50,5
=5050
2.
a, x2017=x
=> x=1 hoặc x=-1
b, 2x+2=250:8
=> 2x+2=250:23
=> 2x+2=247
=> x+2=47
=> x= 45
c, 3x+3x+2=810
=> 3x+3x+2=34+36
=> x=4
chúc bạn học tốt k mình nha .
Bài 1:
a) A=1+22+24+.................+2100
2A=(1+22+24+.................+2100)
2A=2+23+...+2101
2A-A=(2+23+...+2101)-(1+22+24+.................+2100)
A=2101-1
b)bạn tự làm
c) C=-1/90-1/72-1/50-1/42-1/30-1/20-1/12-1/6-1/2
\(=-\left(\frac{1}{90}+\frac{1}{72}+...+\frac{1}{2}\right)\)
\(=-\left(\frac{1}{10.9}+\frac{1}{9.8}+...+\frac{1}{2.1}\right)\)
\(=-\left(\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{8}+...+\frac{1}{2}-1\right)\)
\(=-\left(\frac{1}{10}-1\right)\)
\(=-\left(-\frac{9}{10}\right)=\frac{9}{10}\)
Bài 2:
cứ tính lần lượt là ra
A= 1+2+22+...+2100
=> 2A= 2+22+24+...+2101
=> 2A-A= ( 2+22+24+...+2101) -( 1+2+22+...+2100)
=> A=2101-1
A = 1 + 2 + 22 + 23 + .... + 2100
2A = 2 + 22 + 23 + 24 + ... + 2101
2A - A = 2 + 22 + 23 + 24 + ... + 2101 - ( 1 + 2 + 22 + 23 + .... + 2100)
A = 2 + 22 + 23 + 24 + ... + 2101 - 1 - 2 - 22 - 23 - .... - 2100
A = 2101 - 1