K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 7 2021

\(\left(a+b\right)^2=a^2+b^2+2ab=a^2-2ab+b^2+4ab=\left(a-b\right)^2+4ab=20^2+4.3=412\)

22 tháng 7 2021

cho mình hỏi, đề có sai ko ạ?

6 tháng 8 2020

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=9^2-4\cdot20=1\)

\(\Rightarrow a-b=-1\) ( do \(a< b\) )

\(\Rightarrow\left(a-b\right)^{2017}=-1\)

8 tháng 9 2017

(a+b)2=(a-b)2+4ab

(a+b)2=a2-2ab+b2+4ab

a2+b2+2ab

=(a+b)2

==> (a+b)2=(a-b)2+4ab

(a-b)2=(a+b)2-4ab

a+2ab+b2-4ab

a+b2-2ab

=(a-b)2

==> (a-b)2=(a+b)2-4ab

Áp dụng:

a) (a-b)2=72-4.12

(a-b)2=49-48=1

b) (a+b)2=122+4.23

(a+b)2=144+92=236

Xong!!! Đánh mỏi tay v :V

9 tháng 9 2017

hehe

29 tháng 5 2018

Tính được a = 4; b = 5 suy ra  ( a - b ) 2017  = -1.

16 tháng 10 2020

a, Ta có :

 \(N=x^2\left(y-1\right)-5x\left(1-y\right)=x^2\left(y-1\right)+5x\left(y-1\right)=x\left(x+5\right)\left(y-1\right)\)

Thay x = -20 ; y = 1001 ta được : 

\(-20\left(-20+5\right)\left(1001-1\right)=-20.\left(-15\right).1000=300000\)

b, Ta có : \(x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y=\left(x-y\right)^3+xy\left(x-y\right)\)

\(=\left(x-y\right)^4\left(1+xy\right)\)

Thay x - y = 7 ; xy = 9 ta được : 

\(7^4.\left(1+9\right)=2401.10=24010\)

16 tháng 10 2020

N = x2( y - 1 ) - 5x( 1 - y )

= x2( y - 1 ) + 5x( y - 1 )

= x( y - 1 )( x + 5 )

Tại x = -20 ; y = 1001 ta được :

N = -20( 1001 - 1 )( -20 + 5 )

= -20.1000.(-15)

= 1000.300

= 300 000

Q = x( x - y )2 - y( x - y )2 + xy2 - x2

= x( x - y )2 - y( x - y )2 - xy( x - y )

= ( x - y )[ x( x - y ) - y( x - y ) - xy ]

= ( x - y )( x2 - xy - xy + y2 - xy )

= ( x - y )( x2 - 3xy + y2 )

= ( x - y )[ ( x2 - 2xy + y2 ) + 2xy - 3xy ]

= ( x - y )[ ( x - y )2 - xy ]

= 7[ 72 - 9 ]

= 7( 49 - 9 )

= 7.40 = 280

2 tháng 10 2021

(90+1)2=902+2.90.1+12=8100+180+1=8281

HỌC TỐT!!

24 tháng 10 2020

Phân tích 1 tí 

a + b = 11 > 0 

a . b = 30 > 0 

Suy ra a và b đều là số dương 

a + b = 11 

a = 11 - b 

a . b = 30 

( 11 - b ) . b = 30 

-b^2 + 11b - 30 = 0 

\(\orbr{\begin{cases}b=5\\b=6\end{cases}}\)   ( nhận ) 

\(b=5\Rightarrow a=6\left(n\right)\)   

\(b=6\Rightarrow a=5\left(l\right)\left(a>b\right)\)    

Vậy chỉ có a = 6 ; b = 5 thỏa điều kiện 

\(\left(a-b\right)^{2019}\)   

\(=\left(6-5\right)^{2019}\)   

\(=1^{2019}\)   

\(=1\)

 Vì a+b>0 và ab>0 nên a,b dương

Ta có\(a+b=11\Rightarrow\left(a+b\right)^2=11^2\Leftrightarrow a^2+2ab+b^2=121\)

\(\Rightarrow a^2+2ab+b^2-4ab=121-4ab\Leftrightarrow\left(a-b\right)^2=1\Rightarrow a-b=1\)(Do ab=1 và a,b dương và a>b)

\(\Rightarrow P=1^{2019}=1\)

           Vậy P=1

6 tháng 11 2019

Ta có a+b=9

\(\Rightarrow\left(a+b\right)^2=81\)

\(\Rightarrow\left(a-b\right)^2+4ab=81\)

\(\Rightarrow\left(a-b\right)^2=81-4\cdot20=1\)

\(\Rightarrow a-b=\pm1\)

mà a<b nên a-b<0 => a-b=1

Vậy \(\left(a-b\right)^{2017}=-1^{2017}=-1\)

Có a+b = 9 <=> \(\left(a+b\right)^2\) = 81 <=> \(\left(a-b\right)^2\) +4ab= 81 <=> \(\left(a-b\right)^2\) +4.20 = 81

<=> \(\left(a-b\right)^2\) = 1   Mà a<b  <=> a-b = -1 

Có \(\left(-1\right)^{2017}\) = -1

29 tháng 10 2019

Ta có : ( a - b )2  + 4ab

= a2 - 2ab + b+ 4ab

= a+ 2ab + b2

= ( a + b )( Vế trái )

Do đó : ( a + b )= ( a - b )2 + 4ab 

29 tháng 10 2019

+) Biến đổi vế phải ta có :

\(\left(A-B\right)^2+4AB\)

\(=A^2-2AB+B^2+4AB\)

\(=A^2+2AB+B^2=\left(A+B\right)^2=VT\left(đpcm\right)\)