Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\frac{3\cdot5}{4\cdot4}\cdot...\cdot\frac{99\cdot101}{100\cdot100}\)
\(\frac{1\cdot101}{2\cdot100}\)
\(\frac{101}{200}\)
= 3/4 x 8/9 x 15/16 x ... x 9999/10000
= 3 x 8 x 15 x ... x 9999/ 4 x 9 x 16 x ... x 10000
= (1 x 3) x (2 x 4) x (3 x 5) x ... x (99 x 101)/ (2 x 2) x (3 x 3) x (4 x 4) x ... x (100 x 100)
= (1 x 2 x 3 x ... x 99) x (3 x 4 x 5 x ... x 101)/ (2 x 3 x 4 x ... x 100) x (2 x 3 x 4 x ... x 100)
= (1 x 2 x 3 x ... x 99) x (3 x 4 x 5 x ... x 101)/ (2 x 3 x 4 x ... x 100) x (2 x 3 x 4 x ... x 100)
= 1x 101/ 100 x 2
= 101/200
CHÚC BN HOK TỐT ^^
= 3 . 8 . 15 .... 9999 / 4 . 9 . 16 .... 10000
= ( 1 . 3 ) . ( 2 . 4 ) .( 3 . 5) .... ( 99 .... 101 ) / ( 2. 2) . (3.3). (4.4)...(100.100)
= 1. 101/100.2
= 101/ 200
k nha , đúng đó
1*3/2*2.2*4/3*3.3*5/4*4.....99*101/100*100. =1*2*3*...*99/2*3*4*...*100.3*4*5*...*101/2*3*4*...*100. =1/100 . 101/2. =101/200.
TA CÓ ;
\(A=\frac{3}{4}.\frac{8}{9}...\frac{2499}{2500}\)
\(A=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{49.51}{50.50}\)
\(A=\frac{1.3.2.4...49.51}{2.2.3.3...50.50}\)
\(A=\frac{\left(1.2...49\right).\left(3.4...51\right)}{\left(2.3...50\right).\left(2.3...50\right)}\)
\(A=\frac{1.51}{50.2}=\frac{51}{100}\)
VẬY \(A=\frac{51}{100}\)
\(\frac{3}{4}\)*\(\frac{8}{9}\)*\(\frac{15}{16}\)********\(\frac{9999}{10000}\)
= \(\frac{1\cdot3}{2^2}\)*\(\frac{2\cdot4}{3^2}\)********\(\frac{99\cdot101}{100^2}\)
= \(\frac{1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\)* \(\frac{3\cdot4\cdot5\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot100}\)
= \(\frac{1}{100}\)*\(\frac{101}{2}\)=\(\frac{101}{200}\)
Ta có: A = \(\frac{3}{8}\). \(\frac{8}{9}\).\(\frac{15}{16}\). ... .\(\frac{9999}{10000}\)
\(\Rightarrow\) A = \(\frac{1.3}{2^2}\).\(\frac{2.4}{3^2}\). \(\frac{3.5}{4^2}\). ... . \(\frac{99.101}{100^2}\)
\(\Rightarrow\) A = \(\frac{1.111}{2.100}\)= \(\frac{111}{200}\)
Vậy: A = \(\frac{111}{200}\).
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{9999}{10000}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{99.101}{100.100}\)
\(=\frac{\left(1.2.3....99\right)\left(3.4.5....101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)
\(=\frac{1.101}{100.2}=\frac{101}{200}\)
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\cdot\cdot\cdot\frac{2499}{2500}=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot\frac{49.51}{50.50}\)
\(=\frac{1.2.3....49}{2.3.4...50}\cdot\frac{3.4.5...51}{2.3.4...50}=\frac{1}{50}\cdot\frac{51}{2}=\frac{51}{100}\)
NHƯ CÁCH TRÊN