K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

Tính 3A, sau đó trừ A

29 tháng 8 2018

a. Ta có 3A= 3+3^2+...+3^31

Vậy 3A-A=2A= 3-1-3 +3^31=> A=\(\frac{3^{31}-1}{2}\)

b. A=(3.3^30-1)/2= (3.27^10-1)/2= [3.(27^2)^5-1]/2 = \(\frac{3x729^5-1}{2}\)

Ta co \(729^5\) có số cuối là 9 => 3.\(729^5\)có số cuối là 7, -1 đi có số cuối là 6, chia 2 có số cuối là 3

Vậy A có số cuối là 3 => A không thể là 1 số chính phương

c. A-1= 3+ 3^2+3^3+3^4+3^5+3^6+....+3^25+3^26+3^27+3^28+3^29+3^30 

(Từ 3 đến 3^30 có 30 số, chia làm 6 nhóm)

=3(1+3+9+27+81+243) + 3^6 (1+3+..+243) +....+ 3^24(1+3+...+243)

=364 (3+3^6+...+3^24) Ta có 364 chia hết 7 vậy (A-1) chia hết 7

14 tháng 12 2016

lay o toan boi a

 

cmr [7+1].[7+2] chia hết cho 3

=8x9

=72

72 chia hết cho 3

ĐCPCM

   Ta có chú ý chẵn cộng chẵn bằng chẵn

                        lẻ cộng chẵn bằng lẻ

                        lẻ cộng lẻ là chẵn

mà ta thấy \(3^{100}\) và\(19^{990}\)là lẻ mà lẻ cộng lẻ bằng chẵn 

=> mà số chẵn chia hết cho 2

ĐCPCM

S=1+31+32+33+...+330

3S=3+3^2+3^3+...+3^{31}3S=3+32+33+...+331

3S-S=3^{31}-13SS=3311

2S=3^{4.7+3}-12S=34.7+31

2S=81^7.27-12S=817.271

2S=\overline{......1}.27-12S=......1.271

2S=\overline{......7}-1=\overline{......6}2S=......71=......6

S=\overline{........3}S=........3

Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương

27 tháng 11 2019

1) CMR: (7+1)(7+2)\(⋮\)3

\(\left(7+1\right)\left(7+2\right)=8\cdot9⋮3\left(đpcm\right)\)

2) CMR: \(3^{100}+19^{990}⋮2\)

ta có: \(3^{100}\)có chữ số tận cùng là số lẻ

\(19^{990}\)có chữ số tận cùng là số lẻ

mà lẻ + lẻ = chẵn => đpcm

3) abcabc có ít nhất 3 ước số nguyên tố

ta có: abcabc = abc x 1001 = abc x 11 x 7 x 13

Vậy...

4) Cho \(M=1+3^1+3^2+...+3^{30}\)

Tìm chữ số tận cùng của M. Từ đó suy ra M có phải số chính phương không?

ta có: \(M=1+3^1+3^2+...+3^{30}\)(1)

\(\Rightarrow3M=3+3^2+3^3+...+3^{31}\)(2)

(2) - (1) \(\Leftrightarrow3M-M=\left(3+3^2+3^3+...+3^{31}\right)-\left(1+3^1+3^2+...+3^{30}\right)\)

\(\Leftrightarrow2M=3^{31}-1\)

ta có: \(3^{31}=3^{28}\cdot3^3=\left(3^4\right)^7\cdot27=\left(...1\right).27=...7\Rightarrow2M=...7-1=...6\)

\(\Rightarrow\orbr{\begin{cases}M=...3\\M=...8\end{cases}}\)mà số chính phương không có tận cùng là 3, 8

=>đpcm

Học tốt nhé ^3^

14 tháng 12 2016

Bài 1:

Gọi số phải tìm là a ( a ϵ N*)

Ta có: a+42 chia hết cho 130 và 150

=> a + 42 ϵ BC(130;135)

=> a= 1908; 3858; 5808; 7758; 9708

18 tháng 12 2016

thank bạn nha

16 tháng 5 2017

a.

A = 5 + 5^2 + 5^3 +...+5^100

5A = 5^2 + 5^3 +...+5^101

4A = [5^2 + 5^3+...+5^101] - [5 + 5^2 +5^3+...+5^100]

A = \(\frac{5^{101}-5}{4}\)

b, Vì 5, 5^2,..., 5^100 đều là lũy thừa của 5 nên sẽ bằng 5[5n] chia hết cho 5

=> A là hợp số

c, 

A = 5 + 5^2 + 5^3 +... + 5^100

A = [5 + 5^2] + [5^3 + 5^4] + ... + [5^99 + 5^100]

A = 30 + 5^2[5 + 5^2] + ... + 5^98[5 + 5^2]

A = 30 + 5^2.30 + ... + 5^98 . 30 

=> A chia hết cho 30

d.

Vì A = \(\frac{5^{101}-5}{4}\)[cm trên]

Mà theo quy tắc thì 5101 có chữ số tận cùng là 25 [vì 5n = ...25 với mọi n E N*]

=> 5101-5 = ...20 [chỉ có thể là số có chữ số tận cùng là 0 bình phương lên]

Mà một số có chữ số tận cùng là 0 khi bình phương lên sẽ có ít nhất 2 chữ số 0 ở tận cùng

Mà A chỉ có 4 chữ số 0

=> A không phải số chính phương

Ủng hộ mik nếu thấy OK   Nha mấy bạn >..<

31 tháng 12 2021

[cm trên] là j vậy?