Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề: \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|=101x\)
Ta có: \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|\ge0\Leftrightarrow101x\ge0\Leftrightarrow x\ge0\)
Khi \(x\ge0\)thì: \(pt\Leftrightarrow x-1+x-2+x-3+...+x-100=101x\)
\(\Rightarrow100x-\left(1+2+3+...+100\right)=101x\)
\(\Rightarrow-x=1+2+3+...+100=5050\Leftrightarrow x=-5050\)
b) \(A=3x-x^2-4\)
\(A=3x-x^2-\frac{9}{4}-\frac{7}{4}\)
\(A=-\left(x^2-3x+\frac{9}{4}\right)-\frac{7}{4}\)
\(A=-\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)
Dấu "=" khi: \(x=\frac{3}{2}\)
Ta có:
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4A=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)
\(\Rightarrow A=\frac{3-\frac{203}{3^{100}}}{4}=\frac{3}{4}-\frac{203}{3^{100}.4}< \frac{3}{4}\Rightarrowđpcm\)
Vậy \(A< \frac{3}{4}\)
P/s: làm từng phần một
1.
\(2A=2^2+2^3+...+2^{101}\)
\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(A=2^{101}-2\)
2.
\(\frac{A}{2}=\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{59\cdot61}\)
\(\frac{A}{2}=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)
\(\frac{A}{2}=\frac{1}{5}-\frac{1}{61}\)
\(\frac{A}{2}=\frac{56}{305}\)
\(A=\frac{112}{305}\)
Ok tối mk giẳi cho