Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)
\(=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}\)
\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)-\left(\frac{2}{5}-\frac{5}{7}+\frac{4}{35}\right)+\frac{1}{41}\)
\(=\left(\frac{5}{6}+\frac{1}{6}\right)-\left(\frac{-11}{35}+\frac{4}{35}\right)+\frac{1}{41}\)\(=1-\frac{-7}{35}+\frac{1}{41}=1+\frac{1}{5}+\frac{1}{41}=\frac{251}{205}\)
2. a) \(1+4+4^2+4^3+......+4^{99}=\left(1+4\right)+\left(4^2+4^3\right)+.......+\left(4^{98}+4^{99}\right)\)
\(=\left(1+4\right)+4^2\left(1+4\right)+.........+4^{98}\left(1+4\right)\)
\(=5+4^2.5+........+4^{98}.5=5\left(1+4^2+.....+4^{98}\right)⋮5\)( đpcm )
b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1+1}.5=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\)( đpcm )
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+(n-1)n[(n+1)-(n-2)]
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+(n-1)n(n+1)-(n-2)(n-1)n
3A=(n-1)n(n+1)
A=(n-1)n(n+1)/3
Ta có :
\(A=1.2+2.3+3.4+...+\left(n-1\right).n\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+\left(n-1\right).n.3\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+\left(n-1\right).n.\left[\left(n+1\right)-\left(n-2\right)\right]\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+\left(n-1\right)n.\left(n+1\right)-\left(n-2\right).\left(n-1\right).n\)
\(\Rightarrow3A=\left(n-1\right).n.\left(n+1\right)\)
\(\Rightarrow A=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)
Vậy \(A=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)
P/s : Mik ko chắc
~ Ủng hộ nhé
thôi khỏi