Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= -5/1/7+32/5=0.22857142857142286
B= -2/1/3-1/2/7=119047619047619
A = 1 + ( -2 ) + ( -3 ) + 4 + .... + 99 - 100 - 101 + 102 + 103
= -1 + 1 + ...... + ( -1 ) - 101 + 102 + 103
= 0 - 101 + 102 + 103
= 104
K tự tin lắm
Ta có 1/2*3=1/2-1/3;
1/3*4=1/3-1/4
......................(tương tự với các số khác)
1/149*150=1/149-1/150
=>A=1/2-1/3+1/3-1/4+1/4-1/5+...-1/149+1/149-1/150=1/2-1/150
A=75/150-1/150=74/150=37/75
Vậy A= 37/75
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
\(\Rightarrow A=\frac{5}{11}\)
\(2B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\Rightarrow B=\frac{1009}{2019}\)
\(\frac{2}{7}C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\Rightarrow C=\frac{2018}{2019}:\frac{2}{7}=\frac{7063}{2019}\)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}<\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=2.\frac{1}{2}+2.\frac{1}{4}+3.\frac{1}{6}=2\)
ta có: C = 1/32 + 1/34 + 1/36 +...+ 1/3100 => 9C = 1 + 1/32 +1/34 +...+1/398
=> 9C - C = (1 + 1/32 + 1/34 +...+1/398 ) - (1/32 +1/34 + 1/36 +...+ 1/3100)
=> 8C = 1 - 1/3100 => C = (1 - 1/3100 ) / 8
đúng ko nhỉ
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).\left(1+\frac{1}{5}\right).\left(1+\frac{1}{6}\right).\left(1+\frac{1}{7}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.\frac{6}{5}.\frac{7}{6}.\frac{8}{7}\)
\(=\frac{3.4.5.6.7.8}{2.3.4.5.6.7}\)
\(=\frac{8}{2}\)
\(=4\)
a) \(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).\left(1+\frac{1}{5}\right).\left(1+\frac{1}{6}\right).\left(1+\frac{1}{7}\right)\)
= \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.\frac{6}{5}.\frac{7}{6}.\frac{8}{7}\)
= \(\frac{3.4.5.6.7.8}{2.3.4.5.6.7}\)
= \(4\)