K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2015

x=2015

=> x+1=2016

=> A=x2016-(x+1).x2015+(x+1).x2014-(x+1).x2013+...+(x+1)x2-(x+1)x+2016

=x2016-x2016-x2015+x2015+x2014-x2014-x2013+...+x3+x2-x2-x+2016

=-x+2016

=-2015+2016

=1

Vậy A=1.

9 tháng 11 2019

\(A=-2\)

\(\Leftrightarrow5x^2+y^2+4xy-6x-2y=-2\)

\(\Leftrightarrow4x^2+x^2+y^2+4xy-4x-2x-2y+1+1=0\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)-2\left(2x+y\right)+1+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+y-1\right)^2+\left(x-1\right)^2=0\)(1) 

Mà \(\left(2x+y-1\right)^2+\left(x-1\right)^2\ge0\)nên (1) xảy ra

\(\Leftrightarrow\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=1\end{cases}}\)

\(\Rightarrow B=1^{2015}.\left(-1\right)^{2016}-1^{2016}.\left(-1\right)^{2017}+2014\)

\(=1+1+2014=2016\)

8 tháng 11 2019

Giúp mình với đang cần gấp!!

8 tháng 11 2019

Ta có: A = -2

=> 5x2 + y2 + 4xy - 6x - 2y = -2

=> 5x2 + y2 + 4xy - 6x - 2y + 2 = 0

=> (4x2 + 4xy + y2) - 2(2x + y) + 1 + (x2 - 2x + 1) = 0

=> (2x + y)2 - 2(2x + y) + 1 + (x - 1)2 = 0

=> (2x + y - 1)2 + (x - 1)2 = 0

       <=> \(\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\)

        <=> \(\hept{\begin{cases}y=1-2x\\x=1\end{cases}}\)

        <=> \(\hept{\begin{cases}y=1-2.1=-1\\x=1\end{cases}}\)

Với x = 1; y = -1 => B = 12015.(-1)2016 - 12016.(-1)2017 + 2014

                                    = 1 + 1 + 2014 = 2016

18 tháng 7 2016

A=x2016-100x2015+100x2014-100x2013+...+100x2-100x+100

A = x2016 - (x+1)x2015 + (x+1)x2014 - (x+1)x2013 +....+ (x+1)x2 - (x+1)x + 100

A = x2016 - x2016 - x2015 + x2015 +x2014 - x2014 - x2013 + .......+ x3 + x2 - x2 - x + 100

A = -x + 100

A = -99 + 100

A = 1

20 tháng 4 2018

Bài 3 : 

\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-4}{2013}-1\right)\)

\(\Leftrightarrow\)\(\frac{x-1-2016}{2016}+\frac{x-2-2015}{2015}=\frac{x-3-2014}{2014}+\frac{x-4-2013}{2013}\)

\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2013}\)

\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)

\(\Leftrightarrow\)\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)

Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\)

Nên \(x-2017=0\)

\(\Rightarrow\)\(x=2017\)

Vậy \(x=2017\)

Chúc bạn học tốt ~ 

20 tháng 4 2018

Bài 1 : 

\(\left(8x-5\right)\left(x^2+2014\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}8x-5=0\\x^2+2014=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=0+5\\x^2=0-2014\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}8x=5\\x^2=-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\sqrt{-2014}\left(loai\right)\end{cases}}}\)

Vậy \(x=\frac{5}{8}\)

Chúc bạn học tốt ~ 

16 tháng 10 2015

bạn có: x^4 + 2016x^2 + 2015x + 2016
= x^4 + x^3 + x^2 - x^3 - x^2 - x + 2016x^2 + 2016x + 2016
= x^2(x^2 + x + 1) - x(x^2 + x + 1) + 2016(x^2 + x + 1)
= (x^2 + x + 1)(x^2 - x + 2016)

7 tháng 4 2019

  \(x^4+2016x^2+2015x+2016\)

=\(x^4+x^3+x^2+2015x^2+2015x+2015+1-x^3\)

=\(x^2\left(x^2+x+1\right)+2015\left(x^2+x+1\right)+\left(1-x\right)\left(x^2+x+1\right)\)

=\(\left(x^2+x+1\right)\left(x^2+2015+1-x\right)\)

=\(\left(x^2+x+1\right)\left(x^2-x+2016\right)\)

b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)

\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)

\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)