Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điều kiện: \(x\ne-5\)
- Với x<-5 thì: x+3 <0; x+5<0 nên: \(\frac{x+3}{x+5}>0\)Loại.
- Với x>=-3 thì x+3>=0; x+5 >0 nên \(\frac{x+3}{x+5}\ge0\)Loại.
- Với -5<x<-3 thì x+3 <0; x+5>0 nên: \(\frac{x+3}{x+5}< 0\)TM đề bài.
Nghiệm của BPT là -5 <x <-3.
b) Tương tự, nghiệm của BPT là: \(\orbr{\begin{cases}x< -1\\x>3\end{cases}}\)
Mà em mới lớp 7 à nên k biết nghiệm là gì hết á, chị có cách nào khác k ạ???
ABCtx
a) Xét △AMB và △AMC có:
AB = AC ( gt)
AM chung
BM = MC (gt)
\(\Rightarrow\) △AMB = △AMC (c.c.c)
b) Ta có : △AMB = △AMC
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) ( 2 góc tương ứng)
\(\Rightarrow\) AM là tia phân giác của \(\widehat{BAC}\) (ĐPCM)
c) Ta có: \(\widehat{BMA}+\widehat{CMA}=180^o\) ( kề bù)
Mà \(\widehat{BMA}=\widehat{CMA}\) (△AMB = △AMC)
\(\Rightarrow\widehat{BMA}=\widehat{CMA}=\frac{180^o}{2}=90^o\)
\(\Rightarrow\) AM ⊥ BC (ĐPCM)
d) Gọi tia đối của tia AC là tia Ax.
Vì At là tia phân giác \(\widehat{xAB}\)
\(\Rightarrow\widehat{xAt}=\widehat{tAB}\)
Vì △ABC cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Ta có :\(\widehat{xAB}=\widehat{ABC}+\widehat{ACB}\)
\(\Rightarrow\widehat{xAt}+\widehat{tAB}=\widehat{ABC}+\widehat{ABC}\)
\(\Rightarrow2\widehat{tAB}=2\widehat{ABC}\)
\(\Rightarrow\widehat{tAB}=\widehat{ABC}\)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)At // BC (ĐPCM)
Vì a-b=a => b=0.
Ta có:
0=2(a+0)
0:2=a+0
0=a+0
=>a=0.
Vậy a=0, b=0
Tick cho mình nha