Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{2}{3}x-\frac{1}{2}=\frac{1}{10}\)
\(\Leftrightarrow x\cdot\frac{2}{3}=\frac{1}{10}+\frac{1}{2}=\frac{6}{10}\)
hay \(x=\frac{6}{10}:\frac{2}{3}=\frac{6}{10}\cdot\frac{3}{2}=\frac{18}{20}=\frac{9}{10}\)
Vậy: \(x=\frac{9}{10}\)
b) Ta có: \(5\frac{4}{7}:x=13\)
\(\Leftrightarrow\frac{39}{7}:x=13\)
\(\Leftrightarrow x=\frac{39}{7}:13=\frac{39}{7}\cdot\frac{1}{13}=\frac{3}{7}\)
Vậy: \(x=\frac{3}{7}\)
c) Ta có: \(\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
\(\Leftrightarrow\frac{14}{5}x-50=51\cdot\frac{2}{3}=34\)
\(\Leftrightarrow x\cdot\frac{14}{5}=84\)
\(\Leftrightarrow x=84:\frac{14}{5}=84\cdot\frac{5}{14}=\frac{420}{14}=30\)
Vậy: x=30
d) Ta có: \(\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{3}:x=\frac{3}{5}-\frac{2}{3}=\frac{-1}{15}\)
hay \(x=\frac{1}{3}:\frac{-1}{15}=\frac{1}{3}\cdot\left(-15\right)=\frac{-15}{3}=-5\)
Vậy: x=-5
e) Ta có: \(8\frac{2}{3}:x-10=-8\)
\(\Leftrightarrow\frac{26}{3}:x=2\)
hay \(x=\frac{26}{3}:2=\frac{26}{3}\cdot\frac{1}{2}=\frac{26}{6}=\frac{13}{3}\)
Vậy: \(x=\frac{13}{3}\)
g) Ta có: \(x+30\%=-1.3\)
\(\Leftrightarrow x+\frac{3}{10}=\frac{-13}{10}\)
hay \(x=\frac{-13}{10}-\frac{3}{10}=\frac{-16}{10}=\frac{-8}{5}\)
Vậy: \(x=\frac{-8}{5}\)
i) Ta có: \(3\frac{1}{3}x+16\frac{3}{4}=-13.25\)
\(\Leftrightarrow x\cdot\frac{10}{3}+\frac{67}{4}=-\frac{53}{4}\)
\(\Leftrightarrow x\cdot\frac{10}{3}=\frac{-53}{4}-\frac{67}{4}=-30\)
\(\Leftrightarrow x=-30:\frac{10}{3}=-30\cdot\frac{3}{10}=\frac{-90}{10}=-9\)
Vậy: x=-9
k) Ta có: \(\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
\(\Leftrightarrow x\cdot\frac{14}{5}-50=51\cdot\frac{2}{3}=34\)
\(\Leftrightarrow x\cdot\frac{14}{5}=34+50=84\)
hay \(x=84:\frac{14}{5}=84\cdot\frac{5}{14}=30\)
Vậy: x=30
m) Ta có: \(\left|2x-1\right|=\left(-4\right)^2\)
\(\Leftrightarrow\left|2x-1\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=16\\2x-1=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=17\\2x=-15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{17}{2}\\x=\frac{-15}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{17}{2};\frac{-15}{2}\right\}\)
a) \(22\frac{1}{2}\cdot\frac{7}{9}+50\%-1,25\)
\(=\frac{45}{2}\cdot\frac{7}{9}+\frac{50}{100}-\frac{125}{100}\)
\(=\frac{5}{2}\cdot\frac{7}{1}+\frac{1}{2}-\frac{5}{4}\)
\(=\frac{35}{2}+\frac{1}{2}-\frac{5}{4}=18-\frac{5}{4}=\frac{67}{4}\)
b) \(1,4\cdot\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)
\(=\frac{7}{5}\cdot\frac{15}{49}-\frac{22}{15}:\frac{11}{15}\)
\(=\frac{1}{1}\cdot\frac{3}{7}-\frac{22}{15}\cdot\frac{15}{11}\)
\(=\frac{3}{7}-2=\frac{3-14}{7}=\frac{-11}{7}\)
c) \(\left(-\frac{1}{2}\right)^2-\frac{7}{16}:\frac{7}{4}+75\%\)
\(=\frac{1}{4}-\frac{7}{16}\cdot\frac{4}{7}+\frac{75}{100}\)
\(=\frac{1}{4}-\frac{1}{4}+\frac{3}{4}=\frac{3}{4}\)
Bài 2 Bạn tự làm nhé
1.a,\(22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)
\(=\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)
\(=\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)
\(=\frac{67}{4}\)
b,Các phép tính khác làm tương tự
Đổi các số ra hết thành phân số,có ngoặc thì lm ngoặc trc,Xoq đến nhân chia trước dồi mới cộng trừ
c,tương tự
2.
a,\(1\frac{3}{5}+\frac{7}{12}\div x=\frac{-9}{4}\)
\(\frac{8}{5}+\frac{7}{12}\div x=\frac{-9}{4}\)
\(\frac{7}{12}\div x=\frac{-77}{20}\)
Đến đây dễ bạn tự làm
b,\(\left(2\frac{4}{5}.x+50\right)\div\frac{2}{3}=-51\)
\(\left(\frac{14}{5}x+50\right)\div\frac{2}{3}=-51\)
\(\frac{14}{5}x+50=-34\)
\(\frac{14}{5}x=-84\)
Tự làm tiếp
c,\(\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)\(\Rightarrow\left|\frac{3}{4}x-\frac{1}{2}\right|=\varnothing\)
A)\(75\%.x-\frac{3}{2}:\frac{5}{4}=3\frac{1}{2}+25\%\)
<=>\(\frac{3}{4}x-\frac{6}{5}=\frac{7}{2}+\frac{1}{4}\)
<=>\(\frac{3}{4}x=\frac{7}{2}+\frac{1}{4}+\frac{6}{5}\)
<=>\(\frac{3}{4}x=\frac{99}{20}\)
<=>\(x=\frac{33}{5}\)
B)\(\left(x-\frac{3}{4}\right).50\%-\frac{2}{7}=1+\frac{3}{4}\)
<=>\(\left(x-\frac{3}{4}\right)\cdot\frac{1}{2}=\frac{7}{4}\)
<=>\(\frac{1}{2}x-\frac{3}{8}=\frac{7}{4}\)
<=>\(\frac{1}{2}x=\frac{17}{8}\)
<=>\(x=\frac{17}{4}\)
C)\(\left(\frac{5}{6}-2\frac{1}{2}\right):x=\frac{2}{5}-\frac{1}{3}\)
<=>\(-\frac{5}{3}:x=\frac{1}{15}\)
<=>\(x=-\frac{25}{3}\)
D)\(\left(\frac{1}{4}-x\right)-\frac{1}{2}=2\frac{1}{2}+1\)
<=>\(\frac{1}{4}-x-\frac{1}{2}=\frac{7}{2}\)
<=>\(-\frac{1}{4}-x=\frac{7}{2}\)
<=>\(x=-\frac{15}{4}\)
Bài 1:
\(\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
= \(\left[\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
= \(\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
=\(\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
=\(\frac{1}{26}+\frac{1}{27}+....+\frac{1}{26}\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
......????
a)\(\frac{-2}{3}.x+\frac{1}{5}=\frac{3}{10}\)
\(\frac{-2}{3}x=\frac{3}{10}-\frac{1}{5}=\frac{1}{10}\)
\(\frac{-2}{3}x=\frac{1}{10}\)
\(x=\frac{1}{10}\div\frac{-2}{3}=\frac{-3}{20}\)
b)\(\left(50\%.x+2\frac{1}{4}\right).\frac{-2}{3}=\frac{17}{6}\)
\(50\%.x+2\frac{1}{4}=\frac{17}{6}\div\frac{-2}{3}\)\(=\frac{-17}{4}\)
\(50\%.x+2\frac{1}{4}=\frac{-17}{4}\)
\(50\%.x=\frac{-17}{4}-2\frac{1}{4}=\frac{-17}{4}-\frac{9}{4}=\frac{-26}{4}=\frac{-13}{2}\)
\(50\%.x=\frac{-13}{2}\)
\(x=\frac{-13}{2}\div50\%=-13\)
\(\frac{-2}{3}\)\(\hept{\begin{cases}.\\.\\.\end{cases}ads}\)
g) \(\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{3}\end{cases}}\)
Vây \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
Chú ý: \(a^2-1=\left(a-1\right)\left(a+1\right)\)
Áp dụng:
\(A=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}...\frac{49.51}{50^2}=\frac{2.3.4^2.5^2...49^2.50.51}{3^2.4^2.5^2...50^2}=\frac{2.51}{3.50}=\frac{51}{75}\)