K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

\(2E=\frac{6}{1.3.5}+\frac{6}{3.5.7}+...+\frac{3}{13.15.17}\)

\(2E=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{13.15}-\frac{1}{15.17}\)

\(2E=\frac{1}{1.3}-\frac{1}{15.17}\)

\(2E=\frac{1}{15}-\frac{1}{255}\)

\(\Rightarrow2E=\frac{16}{255}\)

\(\Rightarrow E=\frac{8}{255}\)

28 tháng 8 2016

Dòng thứ 4 là sao

2 tháng 10 2020

a) \(A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{98\cdot99\cdot100}\)

\(A=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\)

\(A=\frac{1}{2}-\frac{1}{99\cdot100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)

b) \(B=\frac{17}{1\cdot3\cdot5}+\frac{17}{3\cdot5\cdot7}+\frac{17}{5\cdot7\cdot9}+...+\frac{17}{47\cdot49\cdot51}\)

\(B=\frac{17}{4}\left(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+...+\frac{4}{47\cdot49\cdot51}\right)\)

\(B=\frac{17}{4}\left(\frac{1}{1\cdot3}-\frac{1}{3\cdot5}+\frac{1}{3\cdot5}-\frac{1}{5\cdot7}+...+\frac{1}{47\cdot49}-\frac{1}{49\cdot51}\right)\)

\(B=\frac{17}{4}\left(\frac{1}{3}-\frac{1}{2499}\right)=\frac{17}{4}\cdot\frac{832}{2499}=\frac{208}{147}\)

6 tháng 2 2020

Ta có:

\(A=\frac{36}{1.3.5}+\frac{36}{3.5.7}+\frac{36}{5.7.9}+...+\frac{36}{25.27.29}\)

\(\Rightarrow A=9.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)

\(\Rightarrow A=9.\left(\frac{1}{3}-\frac{1}{783}\right)\)

\(\Rightarrow A=9.\frac{1}{3}-9.\frac{1}{783}\)

\(\Rightarrow A=3-\frac{1}{87}\)

\(3-\frac{1}{87}< 3.\)

\(\Rightarrow A< 3\left(đpcm\right).\)

Chúc bạn học tốt!

5 tháng 7 2017

\(=\frac{1}{4}.\left(\frac{17.4}{1.3.5}+\frac{17.4}{3.5.7}+\frac{17.4}{5.7.9}+...+\frac{17.4}{47.49.51}\right)\)

\(=\frac{17}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}\right)\)

\(=\frac{17}{4}\left(\frac{1}{3}-\frac{1}{2499}\right)=\frac{17}{4}.\frac{832}{2499}=\frac{208}{147}\)

10 tháng 8 2020

Bài làm:

Ta có: \(A=\frac{1}{1.3.5}+\frac{1}{3.5.7}+...+\frac{1}{47.49.51}\)

\(A=\frac{1}{4}\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{47.49.51}\right)\)

\(A=\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}\right)\)

\(A=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{49.51}\right)\)

\(A=\frac{1}{12}-\frac{1}{4.49.51}< \frac{1}{12}\)

Vậy \(A< \frac{1}{12}\)

Từ đề bài suy ra\(4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{47.49.51}\)

\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{47.49}-\frac{1}{49.51}=\frac{1}{3}-\frac{1}{49.51}< \frac{1}{3}\)

\(\Rightarrow A< \frac{1}{12}\left(đpcm\right)\)

31 tháng 7 2017

\(....................................................\)

(đoạn này bị sao ý,hình như lỗi,sửa mãi ko đc )

\(\Rightarrow2.4.6.....1990.1992-1.3.5.....1989.1991⋮1993\)

\(\rightarrowđpcm\)

31 tháng 7 2017

@Quang Duy

19 tháng 7 2017

\(\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+...+\dfrac{1}{2013.2015.2017}\)

\(=\dfrac{1}{4}\left(\dfrac{4}{1.3.5}+\dfrac{4}{3.5.7}+...+\dfrac{4}{2013.2015.2017}\right)\)

\(=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{5.7}+...+\dfrac{1}{2013.2015}-\dfrac{1}{2015.2017}\right)\)\(=\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{2015.2017}\right)=\dfrac{1}{12}-\dfrac{1}{4.2015.2017}\)

19 tháng 7 2017

Cam on nhìu!