Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào A ta được
\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Ta có:
\(\frac{2n+1}{\left[n\left(n+1\right)\right]^2}=\frac{n+n+1}{n^2\left(n+1\right)^2}=\frac{1}{n\left(n+1\right)^2}+\frac{1}{n^2\left(n+1\right)}\)
\(=\frac{1}{n\left(n+1\right)}.\left(\frac{1}{n}+\frac{1}{n+1}\right)=\left(\frac{1}{n}-\frac{1}{n+1}\right).\left(\frac{1}{n}+\frac{1}{n+1}\right)\)
\(=\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)
Áp dụng vào bài toán ta được
\(A=\frac{2.1+1}{\left[1\left(1+1\right)\right]^2}+\frac{2.2+1}{\left[2\left(2+1\right)\right]^2}+...+\frac{2.99+1}{\left[99\left(99+1\right)\right]^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{99^2}-\frac{1}{100^2}\)
\(=1-\frac{1}{100^2}=\frac{9999}{10000}\)
b/ Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}.\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào bài toán ta được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{99}-\frac{1}{\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
Cả 2 câu là n tự nhiên khác 0 hết nhé
a/ Ta có: \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Áp đụng vào bài toán được
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{1680}+\sqrt{1681}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{1681}-\sqrt{1680}\)
\(=\sqrt{1681}-\sqrt{1}=41-1=40\)
Chứng minh phụ: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) (trục căn thức ở mẫu)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào tính: \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(\frac{1}{\left(1+1\right)\sqrt{1}+1\sqrt{1+1}}+\frac{1}{\left(1+2\right)\sqrt{2}+2\sqrt{2+1}}+...+\frac{1}{\left(99+1\right)\sqrt{99}+99\sqrt{99+1}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
= 1 - 1/ căn 100
=1 - 1/10
= 9/10
Xét \(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{k+1}}=\frac{1}{\sqrt{k\left(k+1\right)\left(\sqrt{k}+\sqrt{k+1}\right)}}\)
\(=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}\left(k+1-k\right)}\)
\(=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Ta có: B=\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)