K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

1/50331648

23 tháng 12 2017

1/33554432

25 tháng 2 2017

bạn viết tất cả các số giống nhau giữa tử và mẫu ra rồi còn bao nhiêu bạn rút gọn

25 tháng 2 2017

\(\frac{1.3.5....49}{27.28.29...50}=\frac{1.3.5....\left(27.29...49\right)}{\left(27.29...49\right).\left(28.30...50\right)}=\frac{1.3.5....25}{28.30....50}\)=\(\frac{13}{4^32^6.8.16.32}=\frac{13}{2^6.2^6.2^3.2^4.2^5}=\frac{13}{2^{24}}\)

8 tháng 4 2017

à mk nhầm thay 50 * b thành a nha

23 tháng 5 2017

Đề sai à???

Đáng ra phải là \(\dfrac{A}{B}\) chứ???

Với cả nếu muốn CM biểu thức ko là số tự nhiên thì chỉ cần có 1 biểu thức thui chứ nhỉ, cần j 2???

mk nhầm các bn thay50 * b thành A nha

16 tháng 3 2018

\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

\(P=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)

\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)

\(P=50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)

\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)

21 tháng 3 2017

Ta có: \(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

\(P=\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+\left(1+\dfrac{3}{47}\right)+...+\left(1+\dfrac{48}{2}\right)+1\)

\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)

\(P=50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(\Rightarrow\)\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}\)\(=\dfrac{1}{50}\)

4 tháng 5 2018

Giúp vớikhocroi

18 tháng 7 2018

Ta có:

P= \(\dfrac{1}{49}+\dfrac{2}{48}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

P= \(\dfrac{1}{49}+\dfrac{2}{48}+...+\dfrac{48}{2}+\left(1+1+...+1\right)\)(có 49 chữ số 1)

P= \(\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)

P= \(\dfrac{50}{49}+\dfrac{50}{48}+...+\dfrac{50}{2}+\dfrac{50}{50}\)

P= \(50.\left(\dfrac{1}{50}+\dfrac{1}{49}+...+\dfrac{1}{2}\right)\)

\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}}{50.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)}\)

\(\dfrac{S}{P}=\dfrac{1}{50}\)

Vậy \(\dfrac{S}{P}=\dfrac{1}{50}\)

5 tháng 5 2018

P = 1/49+2/48+3/47+...+48/2+49/1

Cộng 1 váo mỗi p/s trong 48 p/s đầu , trừ p/s cuối đi 48 ta được

P=(1/49+1)+(2/48+1)+...+(48/2+1)+1

P= 50/49+50/48+....+50/2+50/50

Đưa ps cuối lên đầu

P=50/50+50/49+50/48+...+50/2

=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)

=50S

=> S/P=1/50

24 tháng 3 2017

Ta có: \(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)

\(P=\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+\left(1+\dfrac{3}{47}\right)+...+\left(1+\dfrac{48}{2}\right)+1\)

\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)

\(P=50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(\Rightarrow\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)