Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=1.3+2.4+3.5+...+97.99+98.100
B=1(2+1)+2(3+1)+....+97(98+1)+98(99+1)
B=1.2+1+2.3+2+....+97.98+97+98.99+98
B=(1.2+2.3+3.4+....+97.98+98.99)+(1+2+3+...+98)
B=98.99.100/3 + 98.99/2
B=323400+4851=328251
1.3+2.4+3.5+4.6+.....+97.99+98.100
\(=2^2-1+3^2-1+....+99^2-1\)
\(=1^2+2^2+3^2+....+99^2-99\)
\(=\frac{99.100.196}{6}-99\)
\(=328251\)
Đặt A=\(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{98.100}\)
A=\(\left(\dfrac{1}{1.3}+...+\dfrac{1}{97.99}\right)+\left(\dfrac{1}{2.4}+...+\dfrac{1}{98.100}\right)\)
A=\(\left(\dfrac{1}{1}-\dfrac{1}{99}\right)+\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\)
A=\(\dfrac{98}{99}-\dfrac{49}{100}\)
A=\(\dfrac{4949}{9900}\)
Mà \(\dfrac{3}{4}=\dfrac{7425}{9900}\)
Vậy A<\(\dfrac{3}{4}\)
=1-1/3-1/2+1/4+1/3-1/5-1/4+1/6+...+1/97-1/99-1/98+1/100
=1-1/2-1/99-1/98=2327/4851
\(\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)
\(=1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\)
\(=1-\frac{1}{2}-\frac{1}{99}-\frac{1}{98}\)
\(=\frac{2327}{4851}\)
Đặt A=1/1.3 - 1/2.4 +1/3.5 -1/4.6 +.....+1/97.99 -1/98.100
4A= 4/1.3 -4/2.4 +4/3.5 -4/4.6 +.....+4/97.99 -4/98.100
=(4/1.3 +4/3.5 +...+4/97.99) - (4/2.4 +4/4.6 +...+4/98.100)
=(1/1 -1/3+1/3-1/5+...+1/97-1/99)-(1/2 -1/4 -....1/98-1/100)
=(1/1-1/99)-(1/2-1/100)
4A=98/99 - 99/100
A= (98/99-99/100) :4
=>\(T=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{98^2}{97.99}.\frac{99^2}{98.100}\)
=>\(T=\frac{2^2.3^2.4^2...98^2.99^2}{1.3.2.4.3.5...97.99.98.100}\)
Trông thì khó vậy nhưng thực ra ko khó đâu, bạn chỉ việc rút gọn từ trên tử xuống dưới mẫu là xong
=>\(T=\frac{2.99}{1.100}=\frac{99}{50}=1\frac{49}{50}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{3.5}....\frac{98.98}{97.99}.\frac{99.99}{98.100}\)
\(=\frac{2.3.4....98.99}{1.3.5...97.98}.\frac{2.3.4....98.99}{3.5.7...99.100}\)
rút gọn đi có :
\(\frac{99}{1}.\frac{2}{100}=99.\frac{1}{50}=\frac{99}{50}\)