Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. (a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2
b. (a+b)^3= (a+b)(a+b)(a+b) = (a^2 + 2ab + b^2)(a + b) = a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3b^2a + b^3
c. (a-b)^3= (a - b)(a-b)(a-b) = (a^2 - 2ab + b^2)(a - b) = a^3 - a^2b - 2a^2b + 2ab^2 + b^2a - b^3 = a^3 - 3a^2b + 3ab^2 - b^3
e. (a-b) ( a^2 + ab +b^2) = a^3 + a^2b + b^2a - ba^2 - ab^2 - b^3 = a^3 - b^3
g. ( a-b) ( a+b) = a^2 +ab -ab - b^2 = a^2 - b^2
\(\left(a-b\right)\left(a^2+3ab+b^2\right)+\left(a+b\right)^3+ab\left(b-a\right)\)
\(\Leftrightarrow2a^2+4a^2b+2ab^2\)
B= a3 +a2 - b3 +b2 +ab-3a2b +3ab2 -3ab =
= (a-b)3 + (a-b)2 = 73 + 72 = 392
a,= a\(^2\)+2a+b\(^2\)-2b-2ab+37
=a\(^2\)-2ab+b\(^2\)+2a-2b+37
=(a-b)\(^2\)+2(a-b)+37
⇒5\(^2\)+2.5+37= 25+10+37= 72
b,= a\(^3\)+a\(^2\)-b\(^3\)+b\(^2\)+ab-3a\(^2\)b+3ab\(^2\)-3ab-95
=a\(^3\)-3a\(^2\)b+3ab\(^2\)-b\(^3\)+a\(^2\)-2ab+b\(^2\)-95
=(a-b)\(^3\)+(a-b)\(^2\)-95
⇒5\(^3\)+5\(^2\)-95= 125+25-95= 60
\(\left(a-b\right)\left(a^2+3ab+b^2\right)+\left(a+b\right)^3+ab\left(b-a\right)\)
\(=\left(a-b\right)\left(a^2+3ab+b^2-ab\right)+\left(a+b\right)^3\)
\(=\left(a-b\right)\left(a+b\right)^2+\left(a+b\right)^3=\left(a+b\right)^2\left(a-b+a+b\right)=2a\left(a+b\right)^2\)
\(\left(a-b\right)\left(a^2+3ab+b^2\right)+\left(a+b\right)^3+ab\left(b-a\right)\)
\(=\left(a-b\right)\left(a^2+3ab-ab+b^2\right)+\left(a+b\right)^3\)
\(=\left(a-b\right)\left(a^2+2ab+b^2\right)+\left(a+b\right)^3\)
\(=\left(a-b\right)\left(a+b\right)+\left(a+b\right)^3\)
\(=\left(a+b\right)^2\left(a+b+a-b\right)\)
\(=\left(a+b\right)^2.2a\)