K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

5 tháng 5 2019

Nhầm tưởng tính tích :v

Ta có :

\(B=\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}+\frac{1}{100}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=50.\frac{1}{51}=\frac{50}{51}< \frac{99}{100}\)

\(\Leftrightarrow A>B\)

3 tháng 4 2015

mik nhớ kq là ..........50 thì phải

22 tháng 9 2024

xét B ta có:

B=1/1.2+1/3.4+1/5.6+...+1/99.100

B=1-1/2+1/3-1/4+1/5-1/6+...+1/99-100

B=(1+1/3+1/5+...+1/99)-(1/2+1/4+...+1/100)

B=(1+1/3+1/5+...+1/99)+(1/2+1/4+1/6+...+1/100)-2(1/2+1/4+1/6+...+1/100)

B=(1+1/2+1/3+...+1/99+1/100)-(1+1/2+1/3+1/4+...+1/50)

=>B=1/51+1/52+1/53+...+1/100

=>A/B=1/51+1/52+...+1/100:1/51+1/52+...+1/100=1 (đpcm)

Đó là cách nhanh nhất để giải nếu bn ko hỉu thì mik sẽ giải chi tiết cho

chúc bn học tốt ^-^

 

6 tháng 7 2017

a=\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{100}=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+...+\frac{1}{100}\)

=>b/a=2011

6 tháng 7 2017

hình như đề : CMR : \(\frac{b}{a}\)là 1 số nguyên

Ta có :

\(a=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(a=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(a=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(a=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(a=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(b=\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)

\(b=2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)\)

\(\Rightarrow\frac{b}{a}=\frac{2011.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}=2011\)là 1 số nguyên ( đpcm )

10 tháng 5 2016

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)

\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

\(B=\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{100}\right)\)

\(B=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(B=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right)\)

\(B=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}=A\)

=>A/B=1