Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+..+0
B=0
C=2^100-(2^99+2^98+2^97+...+1)
đặt D=2^99+2^98+2^97+...+1
=>D=2^100-1
=>C=2^100-(2^100-1)=1
22 + 42 + 62 + ....... + 1002
= ( 1.2 )2 + ( 2.2 )2 + ( 3.2 )2 + ..... + ( 2.50 )2
= 12.22 + 22.22 + 32.22 + ...... + 22.502
= 22.(12 + 22 + 32 + ..... + 502)
= 4.\(\frac{50\left(50+1\right)\left(2.50+1\right)}{6}\)
= 44.257550
= 1030200
ở đây công thức là n x ( n + 1 ) x (2 x n +1) / 6
áp dụng trong bài này ta có :
100 x ( 100 + 1) ( 2 x 100 + 1 ) / 6
= 100 x 101 x 201 / 6
= 338350
P/s: làm từng phần một
1.
\(2A=2^2+2^3+...+2^{101}\)
\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(A=2^{101}-2\)
2.
\(\frac{A}{2}=\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{59\cdot61}\)
\(\frac{A}{2}=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\)
\(\frac{A}{2}=\frac{1}{5}-\frac{1}{61}\)
\(\frac{A}{2}=\frac{56}{305}\)
\(A=\frac{112}{305}\)
A=-1++(-1)+..+-(1) có 50 số -1
=>A=-1x50=-50
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+0+..+0
B=0
C=2^100-(2^99+2^98+...+1)
C=2^100-(2^100-1)
C=1
A = 2100- 299 + 298 - 297 + ... + 22 - 2
=> 2A = 2101 - 2100 + 299 - 298 + ... + 23 - 22
Khi đó 2A + A = (2101 - 2100 + 299 - 298 + ... + 23 - 22) + (2100- 299 + 298 - 297 + ... + 22 - 2)
=> 3A = 2101 - 2
=> \(A=\frac{2^{201}-2}{3}\)
b) Ta có B = 3100- 399 + 398 - 397 + ... + 32 - 3 + 1
=> 3B = 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3
Khi đó 3B + B = (3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3) + (3100- 399 + 398 - 397 + ... + 32 - 3 + 1)
=> 4B = 3101 + 1
=> B = \(\frac{3^{101}+1}{4}\)
a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
=> \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
=> \(2A+A=\left(2^{101}-2^{100}+...-2^2\right)+\left(2^{100}-2^{99}+...-2\right)\)
<=> \(3A=2^{101}-2\)
=> \(A=\frac{2^{101}-2}{3}\)
b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
=> \(3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
=> \(3A+A=\left(3^{101}-3^{100}+...+3\right)+\left(3^{100}-3^{99}+...+1\right)\)
<=> \(4A=3^{101}+1\)
=> \(A=\frac{3^{101}+1}{4}\)
- \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{\left(2^2\right)^6.3^4.\left(3^2\right)^5}{\left(2.3\right)^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
- \(\frac{3^{10}.11+9^5.5}{3^9.2^4}=\frac{3^{10}.11+\left(3^2\right)^5.5}{3^9.16}=\frac{3^{10}.11+3^{10}.5}{3^9.16}=\frac{3^{10}.\left(11+5\right)}{3^9.16}=\frac{3^{10}.16}{3^9.16}=3\)
- 2100 - 299 - 298 - ... - 22 - 2
= 2100 - (299 + 298 + ... + 22 + 2)
Đặt A = 299 + 298 + ... + 22 + 2
2A = 2100 + 299 + ... + 23 + 22
2A - A = (2100 + 299 + ... + 23 + 22) - (299 + 298 + ... + 22 + 2)
A = 2100 - 2
Ta có:
2100 - 299 - 298 - ... - 22 - 2
= 2100 - (2100 - 2)
= 2100 - 2100 + 2
= 0 + 2
= 2
- 38 : 36 + (22)4 : 29
= 32 + 28 : 29
\(=9+\frac{1}{2}\)
\(=\frac{18}{2}+\frac{1}{2}=\frac{19}{2}\)