Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:S1=5+52+53+…+599+5100
=>5.S1=52+53+54+…+5100+5101
=>5.S1-S1=52+53+54+…+5100+5101-5-52-53-…-599-5100
=>4.S1=5101-5
=>\(S_1=\frac{5^{101}-5}{4}\)
b)S2=2+22+23+…+299+2100
=>2.S2=22+23+24+…+2100+2101
=>2.S2-S2=22+23+24+…+2100+2101-2-22-23-…-299-2100
=>S2=2101-2
2S1=52+53+54+....+5100+5101
2S1-s1=5101-5
S1=5101-5
b) S2=2101-2
quên, còn bài chứng minh!ahihi
Bài 2:
ta có:
A = \(\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(...\right)\)( nếu vít nốt 3 số cuối thì ko đủ nên tự bn điền ha)
A =\(\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+\left(...\right)\)
A=\(13+3^3.13+...+3^{1998}.13\)
A=\(13.\left(1+3^3+...+3^{1998}\right)⋮13\)
suy ra A chia hết cho 13
a) đặt A =\(1+2+2^2+...+2^{99}\)
ta có:
2A = \(2+2^2+2^3+...+2^{99}+2^{100}\)
2A-A=\(\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
2A-A=\(2+2^2+...+2^{100}-1-2-...-2^{99}\)
A=\(2^{100}-1-2^{99}\)
ukm lâu r ko hay làm mấy bài dạng ntn nên mk quên rùi, ko pik đúng ko! v nên có sai cũng đừng ném gạch bn nhé! mấy bài sau làm tương tự!
A = 20 + 23 + 25 + .... + 299
4A = 22 + 25 + 27 + .... + 2101
4A - A = (22 + 25 + 27 + .... + 2101) - (20 + 23 + 25 + .... + 299)
3A = 22 + 2101 - 20 - 23
3A = 2101 - 5
A = \(\frac{2^{101}-5}{3}\)
\(A=2^0+2^3+2^5+...+2^{99\text{}}\)
\(\Rightarrow4A=2^3+2^5+2^7+...+2^{101}\)
\(\Rightarrow3A=2^{101}-1\)
\(\Rightarrow A=\frac{2^{101}-1}{3}\)