Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+4+4^2+......+4^{100}\)
\(A=5+4+4^2+.....+4^{100}\)
\(A=5+4\left(1+4\right)+4^3\left(1+4\right)+......+4^{99}\left(1+4\right)\)
\(A=5+4\cdot5+4^3\cdot5+......+4^{99}\cdot5\)
\(A=5\left(1+4+4^3+.....+4^{99}\right)⋮5\)
Vậy \(A⋮5\)
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
A=Số thừa số của (-1) là:1+2+3+4+5+...+100=(1+100).100:2=5050
do 5050 là số chẵn => A=1
b) Đặt \(C=\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{1000}}\)
\(\frac{1}{4}A=\frac{1}{4^2}+\frac{1}{4^3}+.......+\frac{1}{4^{1001}}\)
\(A-\frac{1}{4}A=\left(\frac{1}{4^2}-\frac{1}{4^2}\right)+\left(\frac{1}{4^3}-\frac{1}{4^3}\right)+.....+\frac{1}{4}-\frac{1}{4^{1001}}\)
\(\frac{3}{4}A=\frac{1}{4}-\frac{1}{4^{1001}}\)
Đến đây Đặt \(\frac{3}{4}B=\frac{1}{4}\)
Ta có: \(\frac{3}{4}A<\frac{3}{4}B\) \(\rightarrow A
\(\text{Bài 4:}\)
\(a.\left|x-\frac{3}{5}\right|< \frac{1}{3}\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}>-\frac{1}{3}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x>\frac{4}{15}\end{cases}\Rightarrow\frac{4}{15}< x< \frac{14}{15}}\)
\(b.\left|-5,5\right|=5,5\)
\(\Rightarrow\left|x+\frac{11}{2}\right|>5,5\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>5,5\\x+\frac{11}{2}< -5,5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>0\\x< -11\end{cases}}\)
ta có : 2A=2.(1+22+23+24+.............+2100)
=2+23+24+25+..............+2101
\(\Rightarrow\)2A-A=(2+23+24+25+..............+2101)-(1+22+23+24+...............+2100)
=2+23+24+25+............+2101-1-22-23-24-...............-2100
\(\Rightarrow\)A=2101-2
k cho tớ nhé
(1000 - 13)(1000 - 23)(1000 - 33)........(1000 - 503)
= (1000 - 13)(1000 - 23)(1000 - 33)....(1000 - 103)....(1000 - 503)
= (1000 - 13)(1000 - 23)(1000 - 33).....(1000 - 1000)...(1000 - 503)
= (1000 - 13)(1000 - 23)(1000 - 33).....0...(1000 - 503)
= 0
Ta có : 10001000 = ( 103 )1000 = 103000 =1000.....0000 ( có 3000 chữ số 0 )
Nhận xét : Ta thấy rằng 11 + 22 + 33 + .... + 999999 có số các chữ số 2500
=> 11 + 22 + 33 + .... + 999999 + 10001000 có 3 chữ số đầu là 100
\(4A=4\left(1+4+4^2+.........+4^{1000}\right)\)
\(4A=4+4^2+........+4^{1001}\)
\(\Rightarrow4A-A=\left(4+4^2......+4^{1001}\right)-\left(1+4+4^2+......+4^{1000}\right)\)
\(\Rightarrow3A=4^{1001}-1\)
\(\Rightarrow A=\frac{4^{1001}-1}{3}\)