Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E = 3 / 4+ 3 / 28 +......+ 3 / n . ( n + 3 )
E = 3 / 1 . 4 + 3 / 4 . 7 +...+ 3 / n ( n + 3 )
E = 1 -1/ 4 + 1 / 4 - 1 /7 +......+ 1 / n - 1 / n + 3
E = 1 - 1 / n + 3
E = n + 2 / n + 3
3/4+3/28+....+3/n.(n+3)=3/1.4+3/4.7+....+3/n.(n+3)=1/1-1/4+1/4-1/7+...+1/n-1/n+3=1-1/n+3.
Suy ra E<1
\(E=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(\Rightarrow E=1+\left(-\frac{1}{4}+\frac{1}{4}\right)+\left(-\frac{1}{7}+\frac{1}{7}\right)+\left(-\frac{1}{10}+\frac{1}{10}\right)+...\left(-\frac{1}{n}+\frac{1}{n}\right)-\frac{1}{n+3}\)
\(E=1-\frac{1}{n+3}<1\) (ĐPCM)
B = \(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+\frac{3}{208}+\frac{3}{304}\)
= \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{13}-\frac{1}{16}\)
= \(1-\frac{1}{16}\)
= \(\frac{15}{16}\)
Bài 1: Ký hiệu (abcd) là số tự nhiên có 4 chữ số.
(abcd) + (abc) + (ab) + (a) = 1111.a + 111.b + 11.c + d
Vậy 1111.a + 111.b + 11.c + d = 4321
+ Nếu a < 3 => 111.b + 11.c + d > 2098 (vô lý vì b, c, d < 10)
+ Nếu a > 3 => vế trái > 4321
Vậy a = 3 => 111.b + 11.c + d = 988
+ Nếu b < 8 => 11.c + d > 210 (vô lý vì c, d < 10)
+ Nếu b > 8 => vế trái > 988
Vậy b = 8 => 11.c + d = 100
+ Nếu c < 9 => d > 11 (vô lý)
Vậy c = 9; d = 1
=> (abcd) = 3891
Mk chỉ giải phần b thôi còn phần a,c bạn tự thay số vào để làm nha
b)Ta có:x-y=2
=>x =y+2(1)
B=-34x+34y
=34.(-x+y)(2)
+)Thay (2) vào (1) được:
34.[-(y+2)+y]
=34.(-y-2+y)
=34.(-y+y-2)
=34.(-2)
=(-68)
Chúc bn học tốt
( 1 + n ) . n = 1275 . 2 = 2550
Mà 2550 = 50 . 51
=> n = 50
Đáp án là: 12/ 13