Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow \tan A+\tan C=2\tan B\)
\(\Leftrightarrow \frac{\sin\left ( A+C \right )}{\cos A\cos C}=2\cdot\frac{\sin\left ( A+C \right )}{\cos B}\\\)
\(\Rightarrow \cos B=2\cos A\cos C\)
\(\Leftrightarrow 2\cos B=\cos(A-C)\)
\(\left (\cos A+\cos C \right )^2=\cos^2 A+\cos^2 C+2\cos A\cos C\\=\frac{\cos2A+\cos2C}{2}+1+\cos B\\=-\cos(B)\cos(A-C)+1+\cos B \\=-2\cos^2B+\cos B+1 \le \frac{9}{8}\\\Rightarrow \cos A+\cos C\le \frac{3\sqrt2}{4}\)
Chứng minh hoàn tất.
Đặt \(\overrightarrow{AB}=\overrightarrow{a},\overrightarrow{AC}=\overrightarrow{b},\overrightarrow{AA'}=\overrightarrow{c}\)
với \(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0\)
và \(\left|\overrightarrow{a}\right|=a,\overrightarrow{\left|b\right|}=a\sqrt{2},\left|\overrightarrow{c}\right|=a\sqrt{3}\)
khi đó
\(\overrightarrow{AB}=\overrightarrow{a}+\overrightarrow{c,}\overrightarrow{BC}=-\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}\)
Giả sử đường vuông góc chung cắt \(\overrightarrow{AB}\) tại M và cắt \(\overrightarrow{BC'}\) tại N và \(\overrightarrow{AM}=x.\overrightarrow{AB'}=x.\overrightarrow{a}+x.\overrightarrow{c},\overrightarrow{BN}=y.\overrightarrow{BC'}=-y.\overrightarrow{a}+y.\overrightarrow{b}+y.\overrightarrow{c}\)
Suy ra \(\overrightarrow{AN}=\left(1-y\right)\overrightarrow{a}+y.\overrightarrow{b}+y.\overrightarrow{c}\)
Và do đó
\(\overrightarrow{MN}=\left(1-x-y\right)\overrightarrow{a}+y.\overrightarrow{b}+\left(y-x\right)\overrightarrow{c}\)
Ta có :
\(MN\perp AB',BC'\Leftrightarrow\begin{cases}\overrightarrow{MN}.\overrightarrow{AB}=0\\\overrightarrow{MN}.\overrightarrow{BC'}=0\end{cases}\)
\(\Leftrightarrow\begin{cases}-4x+2y+1=0\\-2x+6y-1=0\end{cases}\)
Giải hệ ta thu được \(x=\frac{2}{5},y=\frac{3}{10}\)
Từ đó :
\(MN^2=\left[\left(1-x-y\right)^2+2y^2+3\left(y-x\right)^2\right].a^2=\frac{39^a}{100}\)
Suy ra \(d\left(AB';BC'\right)=\frac{a\sqrt{39}}{10}\)
a) \(cos\left(A+B\right)+cosC=0\)
\(\Leftrightarrow cos\left(\pi-C\right)+cosC=0\)
\(\Leftrightarrow-cosC+cosC=0\)
\(\Leftrightarrow0=0\left(đúng\right)\)
\(\Leftrightarrow dpcm\)
b) \(cos\left(\dfrac{A+B}{2}\right)=sin\dfrac{C}{2}\)
\(\Leftrightarrow cos\left(\dfrac{\pi-C}{2}\right)=sin\dfrac{C}{2}\)
\(\Leftrightarrow cos\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)=sin\dfrac{C}{2}\)
\(\Leftrightarrow sin\dfrac{C}{2}=sin\dfrac{C}{2}\left(đúng\right)\)
\(\Leftrightarrow dpcm\)
c) \(cos\left(A-B\right)+cos\left(2B+C\right)=0\left(1\right)\)
Ta có : \(A+B+C=\pi\)
\(\Leftrightarrow2B+C=\pi-A+B\)
\(\Leftrightarrow2B+C=\pi-\left(A-B\right)\)
\(\left(1\right)\Leftrightarrow cos\left(A-B\right)+cos\left[\pi-\left(A-B\right)\right]=0\)
\(\Leftrightarrow cos\left(A-B\right)-cos\left(A-B\right)=0\)
\(\Leftrightarrow0=0\left(đúng\right)\)
\(\Leftrightarrow dpcm\)
ĐKXĐ: ....
Đặt \(tan\frac{x}{2}=t\Rightarrow tanx=\frac{2t}{1-t^2}\)
\(\frac{2t}{1-t^2}-t-\frac{2\sqrt{3}}{3}=0\)
\(\Leftrightarrow6t-3t\left(1-t^2\right)-2\sqrt{3}\left(1-t^2\right)=0\)
\(\Leftrightarrow3t^3+2\sqrt{3}t^2+3t-2\sqrt{3}=0\)
\(\Leftrightarrow\left(3t-\sqrt{3}\right)\left(t^2+\sqrt{3}t+2\right)=0\)
\(\Rightarrow t=\frac{\sqrt{3}}{3}\Rightarrow tan\frac{x}{2}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow\frac{x}{2}=\frac{\pi}{6}+k\pi\Rightarrow x=\frac{\pi}{3}+k2\pi\)
Do A;B;C là 3 góc trong tam giác nên \(0< A;B;C< \pi\)
\(\Rightarrow0< \frac{\pi}{3}+k2\pi< \pi\Rightarrow k=0\)
\(\Rightarrow\) Phương trình có nghiệm duy nhất \(\Rightarrow A=B=C=\frac{\pi}{3}\) hay tam giác ABC đều