K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

Nhận xét:

\(2+2^2+2^3+...+2^n=2\left(1+2+2^2+...+2^{n-1}\right)=2\left(2^n-1\right)=2^{n+1}-2\)

\(2^2+2^3+2^4+...+2^n=2^2\left(1+2+2^2+...+2^{n-2}\right)=2^2\left(2^{n-1}-1\right)=2^{n+1}-2^2\)

Tương tự

\(2^3+2^4+2^5+...+2^n=2^{n+1}-2^3\)

...

\(2^n=2^{n+1}-2^n\)

Cộng vế với vế ta được:

\(2+2\cdot2^2+3\cdot2^3+4\cdot2^4+...+n\cdot2^n=n\cdot2^{n+1}-\left(2+2^2+2^3+...+2^n\right)=n\cdot2^{n+1}-2^{n+1}+2\)

\(\Rightarrow2\cdot2^2+3\cdot2^3+4\cdot2^4+...+n\cdot2^n=\left(n-1\right)\cdot2^{n+1}\)(1)

Theo giả thiết thì VT(1) = 2n+10. Ta có:

\(2^{n+10}=\left(n-1\right)\cdot2^{n+1}\Leftrightarrow2^{n+1}\cdot2^9=\left(n-1\right)\cdot2^{n+1}\Leftrightarrow n-1=2^9\Leftrightarrow n=2^9+1\)

Vậy, n = 29 + 1.

(Đề bài thì hay mà bạn đánh câu hỏi cẩu thả quá! :D). 

10 tháng 7 2016

Đinh Thùy Linh ơ đề bài bảo tìm x mà

18 tháng 9 2016

Các bn tl nhanh hộ mk điiiiiiiiiiiiiiiiiiiiiiiii mà huhu

5 tháng 7 2017

Này bn, có người trả lời phía trên rồi đó!

7 tháng 10 2020

a) \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

b) \(1^2+2^2+...+n^2\)

\(=1\left(2-1\right)+2\left(3-1\right)+...+n\left[\left(n+1\right)-1\right]\)

\(=1.2+2.3+...+n\left(n+1\right)-\left(1+2+...+n\right)\)

\(=\frac{1.2.3+2.3.\left(4-1\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]}{3}-\frac{n\left(n+1\right)}{2}\)

\(=\frac{1.2.3-1.2.3+2.3.4-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}-\frac{n\left(n+1\right)}{2}\)

\(=n\left(n+1\right)\left(\frac{n+2}{3}-\frac{1}{2}\right)\)

\(=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)

7 tháng 10 2020

câu c đâu bạn