Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/1x2+1/2x3+1/3x4+.....+1/6x7
=1-1/2+1/2-1/3+1/3-1/4+.....+1/6-1/7
=1-1/7
=6/7
B = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/90 + 1/110
B = 1/2 x 3 + 1/3 x 4 + 1/4 x 5 + 1/5 x 6 + 1/6 x 7 + ... + 1/19 x 10 + 1/10 x 11
B = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/19 - 1/10 + 1/10 - 1/11
B = 1/2 - 1/11
B = 9/22
\(B=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(B=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
Vậy B=9/22
1/2+1/6+1/12+1/20+1/30+1/42
=1/1*2+1/2*3+1/3*4+1/4*5+1/5*6+1/6*7
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1/1-1/7
=6/7
k cho mình nha bạn!!!
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=\frac{1}{1}+\frac{1}{7}\)
\(=\frac{8}{7}\)
Học tốt
1/2+1/6+1/12+1/20+1/30+1/42=1260/3628800
k mình nha cậuLê Đức Nguyên Khoa
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(=\frac{1}{2.1}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
=1/1*2 + 1/2*3 + 1/3*4 + ........1/6*7
= 1/1 - 1/2 +1/2 -1/3 +1/3 -1/4 +1/4 -1/5 +1/5 -1/6 +1/6 -1/7
1/2 và 1/3 và 1/4 và 1/5 và 1/6 xuất hiện 2 lần gạch cả hai
Còn lại 1/1 -1/7 = 6/7
1/2+1/6+1/12+1/20+1/30+1/42
=1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + 1/5x6 +1/6x7
=1 -1/2 +1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7
= 1 - 1/7
= 6/7
Ta có
\(\frac{1}{2}=\frac{1}{1.2};\frac{1}{6}=\frac{1}{2.3};\frac{1}{12}=\frac{1}{3.4};\frac{1}{20}=\frac{1}{4.5};\frac{1}{30}=\frac{1}{5.6};\frac{1}{42}=\frac{1}{6.7}\)
\(\Rightarrow A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
Ta thấy:
\(\frac{1}{1.2}=1-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};...;\frac{1}{6.7}=\frac{1}{6}-\frac{1}{7}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
Thấy
\(-\frac{1}{2}+\frac{1}{2}=0;-\frac{1}{3}+\frac{1}{3}=0;...;-\frac{1}{6}+\frac{1}{6}=0\)
Ta coi như hết
\(\Rightarrow A=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
Đặt \(A=\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\)
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(A=1-\frac{1}{7}\)
\(A=\frac{6}{7}\)