Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi A là biểu thức ta có:
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
Đặt biểu thức là A ta có:
A=1.2+2.3+3.4+...+99.100 (1)
Nhân 2 vế của đẳng thức (1) với 3 ta được:
3A=3.(1.2+2.3+3.4+4.5+...+99.100)
3A=1.2.3+2.3.3+3.3.4+4.5.3+...+99.100.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
3A=1.2.3+2.3.4-2.3.1+3.4.5-2.3.4+4.5.6-4.5.3+...+99.100.101-99.100.98
3A=99.100.101
3A=999900
A=999900:3=333300
Đặt S=1.2+2.3+3.4+...+99.100
=>3S=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
=>3S=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=>S=\(\frac{99.100.101}{3}\)
=>S=333 300
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
nguồn:câu hỏi tương tự
S = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3S = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
=> 3S = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
=> 3S = 99.100.101
=> S = \(\frac{99.100.101}{3}=333300\)
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
Gọi tổng là A
3.A=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+99.100(101-98)
=(1.2.3-0.1.2)+(2.3.4-1.2.3)+(3.4.5-2.3.4)+...+(99.100.101-98.99.100)
=99.100.101-0.1.2(vì những số khác giản ước)
=999900-0
=999900
A=999900:3=333300
Vậy A=333300
Đặt P = 1.2+2.3+3.4+...+99.100
3P = 1.2.3+2.3.3+3.4.3+...+99.100+3
3P = 1.2 (3-0) +2.3(4-1)+3.4(5-2) +...+ 99.100( 101-98)
3P = ( 1.2.3 + 2.3.4 + 3.4.5 + 99.100.101 ) -( 0.1.2 + 1.2.3 + 2.3.4 + ....+ 98.99.100)
3P = 99.100.101 - 0.1.2
3P = 999900 - 0
3P = 999900
P = 999900 : 3
P = 333300
Gọi tổng là A
3.A=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+99.100(101-98)
=(1.2.3-0.1.2)+(2.3.4-1.2.3)+(3.4.5-2.3.4)+...+(99.100.101-98.99.100)
=99.100.101-0.1.2(vì những số khác giản ước)
=999900-0
=999900
A=999900:3=333300
Vậy A=333300
quá dễ
C=1.2+2.3+3.4+...+99.100
=>3C=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.3+2.3.(4-1)+3.4(5-2)+....+99.100(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101=999900
=>C=333300
vậy C=333300
C=1.2+2.3+3.4+...+99.100
3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100(101-98)
3C=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3C=99.100.101
C=333300