Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1.2+2.3+3.4+......+99.100
Gấp A lên 3 lần ta có:
A . 3 = 1.2.3 + 2.3.3 + 3.4.3 + … + 99.100.3
A . 3 = 1.2.3 + 2.3.(4 - 1) + 3.4.( 5 - 2) + … + 99.100. (101 - 98)
A . 3 = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + … + 99.100.101 - 98.99.100
A . 3 = 99.100.101
A = 99.100.101 : 3
A = 33.100.101
A = 333 300
Đặt A = 1.2 + 2.3 + 3.4 + ...+99.100
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 4.5.6 - 3.4.5 + ... + 99.100.101-98.99.100
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 - 3.4.5 + ... + 99.100.101
=> 3A = 99.100.101
=> 3A = 999900
=> A = 999900 : 3
=> A = 333300
Vậy A = 333300
A = 1.2 + 2.3 + 3.4 + .. + 99.100
<=> 3A = 1.2.3 + 2.3.3 + 3.4.3 +...+ 99.100.3
= 1.2.3 + 2.3.(4-1) + 3.4.( 5 -2) +...+ 99.100.(101-98)
= 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + 3.4.5 + ..- 98.99.100 + 99.100.101
= 999900
<=> A = 999900 : 3 = 333300
A=1.2+2.3+3.4+...+99.100
3A=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=1.2.3+2.3.4+3.4.5+...+98.99.100+99.100.101 - 0.1.2-1.2.3-2.3.4-3.4.5-...-98.99.100
3A=99.100.101-0.1.2
3A=999900-0
3A=999900
A=999900:3
A=333300
Nhân cả 2 vế của S với 3 ta được :
3S = 3(1.2 + 2.3 + 3.4 + ..... + 49.50)
= 1.2.3 + 2.3.3 + 3.4.3 + ... + 49.50.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 49.50.(51 - 48)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 49.50.51 - 48.59.50
= (1.2.3 - 1.2.3) + (2.3.4 - 2.3.4) + ......... + (48.49.50 - 48.49.50) + 49.50.51
= 49.50.51
=> S = 49.50.51/3 = 41650
Ta có: 3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + .....+ 50.51.(52 -49)
= 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 -2.3.4 + .....+ 50.51.52 - 49.50.51
3S = 50.51.52
S = 50.17.52 =44200
1.Tính
A= (1-1/22).(1-1/32)...(1-1/1002)
B= -1/1.2-1/2.3-1/3.4-...-1/100.101
C= 1.2+2.3+3.4+...+100.101
Lời giải :
Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101
3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3
=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)
=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102
=100.101.102
S=100.101.34=343400
1.Tính
a) Ta có:
A=(1-1/22).(1-1/32)...(1-1/1002)
=>A=3/22.8/32.....9999/1002
=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)
=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)
=>A=1/100.101/2
=>A=101/200
b) Ta có:
B=-1/1.2-1/2.3-1/3.4-...-1/100.101
=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)
=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)
=>B=-(1-1/101)
=>B=-100/101
c) Ta có:
C=1.2+2.3+3.4+...+100.101
=>3C=1.2.3+2.3.3+3.4.3+...+100.101.3
=>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)
=>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102
=>3C=100.101.102
=>3C=1030200
=>C=343400
Chúc bạn hok tốt nhé >:)!!!!!
làm tương tự như trên nhé hoàng và sau đó:
= \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
k cho tớ nhé
đặt A =1.2+2.3+3.4+...........+n.(n+1)
3.A=1.2.3+2.3.(4-1)+.........................+n.(n+1).(n+2-(n-1))
=1.2.3+2.3.4-1.2.3+.......................+n.(n+1).(n+2)-(n-1).n.(n+1)
=1.2.3-n.(n+1).(n+2)
A=6-n.(n+1).(n+2)/3=2-n.(n+1).(n+2)/3
A = 1.2 + 2.3 + 3.4 + ...... + 100.101
3A = 1.2.3 + 2.3.3 + 3.4.3 + ...... + 100.101.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ..... + 100.101.(102 - 99)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ...... + 100.101.102 - 99.100.101
3A = 100.101.102
A = 100.101.34
A = 343400
\(A=1.2+2.3+3.4+...+99.100\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100\left(101-98\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(=99.100.101\)
\(\Rightarrow A=\frac{99.100.101}{3}=\frac{999900}{3}=333300\)
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 99.100
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ....... + 99.100.101
=> 3A = 99.100.101
=> A = 99.100.101/3
=> A = 333300