Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1,1 + 1,2 + 1,3 + 1,4 + 1,5 + 1,6 + 1,7 + 1,8 + 1,9
A=(1,9+1,1)+(1,8+1,2)+(1.7+1,3)+(1,6+1,4)+1,5
A=3+3+3+3+1,5
A=3.4+1,5
A=12+1,5
A=13,5
[1]+[1,1]+[1,2]+.............+[1,9]
=1 ,2 ,3 , 5........10
=10
Vậy A=10
a, |x+1| + | x+2 | + | x+3 | = 5x-1
=> x+1 + x+2 + x +3 = 5x - 1
=> 4x + 10 = 5x- 1
=> 5x-4x = -1-10
\(\orbr{\begin{cases}x=11\\x=-11\end{cases}}\)
b,
|x+1,1| + | x+1,2 | + | x+1,3 | + | x+ 1 , 4 | = 5x
=> x+1,1 + x + 1 , 2 + x + 1,3 + x + 1,4 = 5x
=> 4x + 5 = 5x- 1
=> 5x-4x = -1-5
=> \(\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
c, d sáng mai mình giải
\(\frac{x}{y}=\frac{3}{5}\Leftrightarrow5x=3y\Leftrightarrow35x=21y\)
\(7y=6z\Leftrightarrow21y=18z\)
Suy ra \(35x=18z\)
\(4x+8y-9z=-3\)
\(40x+80y-90z=-30\)
\(5x+35x+80y-90z=-30\)
\(83y-72z=-30\)
\(83y-84y=-30\left(Vì6z=7y\Leftrightarrow-72z=-84y\right)\)
\(y=30\)
\(x=18\)
\(z=35\)
\(\left|x+1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|=5x\)(1)
VT(1) >=0 với mọi x nên để 1 có nghiệm thì 5x phải >= 0 hay x>=0
Với x>=0 thì các giá trị tuyệt đối của VT bằng biểu thức bên trong nên
(1) <=> x + 1,1 + x + 1,2 + x + 1,3 + x + 1,4 = 5x
<=> x = 5.