Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html
\(A=\left|x+\frac{1}{2}\right|-1\)
ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)
\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)
\(\Rightarrow A\ge-1\)
\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy GTNN của A=-1 tại x=-1/2
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}=\frac{\left|x-2017\right|+2019}{\left|x-2017\right|+2019}-\frac{1}{\left|x-2017\right|+2019}\)
\(=1-\frac{1}{\left|x-2017\right|+2019}\)
A đạt giá trị nhỏ nhất <=> \(\frac{1}{\left|x-2017\right|+2019}\)Đạt giá trị lớn nhất <=> \(\left|x-2017\right|+2019\)Đạt giá trị bé nhất
Ta co: \(\left|x-2017\right|\ge0,\forall x\)
<=> \(\left|x-2017\right|+2019\ge0+2019=2019\)
Do đó: \(\left|x-2017\right|+2019\)có giá trị nhỏ nhất là 2019
'=" xảy ra <=> x-2017=0 <=> x=2017
Vậy min A=\(1-\frac{1}{2019}=\frac{2018}{2019}\)khi và chỉ khi x=2017
\(A=\left|x-3\right|+\left|4+x\right|=\left|3-x\right|+\left|4+x\right|\ge\left|3-x+4+x\right|=7\)
Dấu "=" xảy ra <=> \(\left(3-x\right)\left(x+4\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}3-x>0\\x+4>0\end{cases}}\) hoặc \(\hept{\begin{cases}3-x< 0\\x+4< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< 3\\x>-4\end{cases}}\) hoặc \(\hept{\begin{cases}x>3\\x< -4\end{cases}}\) (loại)
\(\Leftrightarrow-4< x< 3\)
Vậy Amin = 7 <=> -4 < x < 3
Ta có :
B = \(\left|x-1\right|+\left|x-2\right|+\left|3-x\right|+\left|5-x\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ge2\\x\le3\\x\le5\end{matrix}\right.\Leftrightarrow2\le x\le3\)
Vậy với \(2\le x\le3\)thì B đạt giá trị nhỏ nhất là 5.
\(\left|x+3\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)
dấu"=" xảy ra\(< =>-3\le x\le5\)
cám ơn bạn =)))