Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+7y^2+3x-6y=5xy-7\)
\(\Leftrightarrow x^2-5xy+\frac{25}{4}y^2+3x-\frac{15}{2}y+\frac{9}{4}+\frac{3}{4}y^2+\frac{3}{2}y+\frac{3}{4}+x^2+4=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}y\right)^2+2.\left(x-\frac{5}{2}y\right).\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{3}{4}\left(y^2+2y+1\right)+x^2+4=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}y+\frac{3}{2}\right)^2+\frac{3}{4}\left(y+1\right)^2+x^2+4=0\)
Thấy ngay \(VT>0\)
=> Pt vô nghiệm
Sure ?
\(2x^2+7y^2+3x-6y=5xy-7\)
<=> \(16x^2+56y^2+24x-48y=40xy-56\)
<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)
<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)
<=> \(\left(4x-5y\right)^2+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)
<=> \(\left(4x-5y+3\right)^2+\left(31y^2-18y+47\right)=0\)(1)
Mà \(31y^2-18y+47>0\)với mọi y
=> (1) vô nghiệm
theo em chắc có thể là như thế này:
xy(6+8+6+3)=2
=>xy23=2
=>xy=2:23
em lm đc đến đây cj có thể lm nốt ko
\(x^2+6y^2=2015-7xy\\ \Leftrightarrow x^2+xy+6xy+6y^2=2015\\ \Leftrightarrow x\left(x+y\right)+6y\left(x+y\right)=2015\\ \Leftrightarrow\left(x+6y\right)\left(x+y\right)=2015\\ =1\cdot\left(-2015\right)=\left(-1\right)\cdot2015\\ =-5\cdot403=5\left(-403\right)\\ =65\cdot\left(-31\right)=-65\cdot31\\ =13\cdot\left(-155\right)=-13\cdot155\)
Thay vào lần lượt rồi ra.
\(a\orbr{x=\frac{\pm\sqrt{5}-3}{4}}\)
\(b\hept{\begin{cases}x=5\\y=4\end{cases}}\)
2)\(\Leftrightarrow\left(x^3-x^2y\right)+\left(y^3-xy^2\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)=5\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)=5\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)=5\)
TH1\(\hept{\begin{cases}x-y=1\\x^2-y^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}\left(N\right)}}\)
TH2\(\hept{\begin{cases}x-y=5\\x^2-y^2=1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
TH3\(\hept{\begin{cases}x-y=-1\\x^2-y^2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}\left(N\right)}}\)
TH4\(\hept{\begin{cases}x-y=-5\\x^2-y^2=-1\end{cases}\Leftrightarrow\hept{ }x,y\in\varnothing}\)
Vậy......
Ta có \(2^x+\left(x^2+1\right)\left(y-2\right)\left(y-4\right)=0\)
Mà \(2^x>0,x^2+1>0\)
=> \(\left(y-2\right)\left(y-4\right)< 0\)
=> \(2< y< 4\)
=> \(y=3\)
Thay y=3 vào đề bài ta có:
\(2^x-\left(x^2+1\right)=0\)
=> \(2^x=x^2+1\)
Mà \(2^x\)chẵn với \(x>0\)
=> \(x\)lẻ
Đặt \(x=2k+1\)(k không âm)
Khi đó \(2^{2k+1}=\left(2k+1\right)^2+1\)
=> \(2.2^{2k}=4k^2+4k+2\)
=> \(2^{2k}=2k^2+2k+1\)
+ k=0 => \(2^0=1\)thỏa mãn
=> \(x=1\)
+ \(k>0\)=> \(2^k\)chẵn
Mà \(2k^2+2k+1\)lẻ với mọi k
=> không giá trị nào của k thỏa mãn
Vậy x=1,y=3
\(PT\Leftrightarrow x^3+2x^2+3x+2=y^3\)
Với x thuộc đoạn {-1,1} ta có
\(x^3< x^3+2x^2+3x+2< \left(x+1\right)^3\)
\(\Rightarrow x^3< y^3< \left(x+1\right)^3\)(vô lí)
\(\Rightarrow x\in[-1;1]\)
\(\Rightarrow x\in\left\{-1,0,1\right\}\)
Với x=-1=> y=0(tm)
Với x=0=>\(y=\sqrt[3]{2}\left(ktm\right)\)
Với x=1=>y=2(tm)
Vậy...........