Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(\frac{1}{9}.3^4.3^n=3^7\)
\(\frac{1}{9}.81.3^n=3^7\)
\(\frac{81}{9}.3^n=3^7\)
\(9.3^n=3^7\)
\(3^2.3^n=3^7\)
\(3^2.3^n=3^2.3^5\)
vậy \(n=5\)
b/ \(\frac{1}{2}.2^n+4.2^n=9.2^5\)
\(2^n\left(\frac{1}{2}+4\right)=9.2^5\)
\(2^n.\frac{9}{2}=9.32\)
\(2^n.\frac{9}{2}=288\)
\(2^n=288:\frac{9}{2}\)
\(2^n=64\)
\(2^n=2^6\)
Vậy \(n=6\)
a) \(\Rightarrow3^n=3^5:3^2=3^3\)
\(\Rightarrow n=3\)
b) \(1\times2^n=4\)
\(\Rightarrow2^n=4:1=4=2^2\)
\(\Rightarrow n=2\)
c) \(3^2\times3^n=3^7\)
\(\Rightarrow3^n=3^7:3^2=3^5\)
\(\Rightarrow n=5\)
d) \(\frac{1}{9}=\left(\frac{1}{3}\right)^2\)
\(\left(\frac{1}{3}\right)^2\times27^n=3^n\)
Làm tới đây rồi khúc sau thực sự không chắc lắm
a) x+2x+...+50x =2550
x. [ 1+2+3+....+50]=2550
ta co :
so so hang cua day 1;2;3;4;...;50:
[50-1]:1+1=50
tong cua day tren la :
[50+1].50:2=1275
=> x.1275=2550
x=2550:1275
vay x=2
Trl :
\(\frac{1}{9}.27^n=3^{n+2}\)
\(3^{-2}.\left(3^3\right)^n=3^{n+2}\)
\(3^{-2}.3^{3n}=3^{n+2}\)
\(\Rightarrow-2+3n=n+2\)
\(\Rightarrow3n=n+4\)
\(\Rightarrow2n=4\)\(\Rightarrow n=2\)
Hok tốt
Trl :
\(\frac{1}{9}3^4.3^n=3^7\)
\(3^{-2}.3^4.3^n=3^7\)
\(\Rightarrow-2+4+n=7\)
\(\Rightarrow2+n=7\)
\(\Rightarrow n=7-2\)
\(\Rightarrow n=5\)
Hok tốt !
1, xy-2x+3y=9
<=> xy-2x+3y-9=0
<=> x(y-2) + 3(y-2)=0
<=>(y-2)(x+3)=0
<=>+) y-2=0 <=> y=2
+)x+3=0<=>x=-3
\(a,3^n=3^4\)
\(\Rightarrow n=4\)
\(b,2008^n=2008^0\)
\(\Rightarrow n=0\)