K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

a) pt

<=> (x - 5)(x + 5) - (x - 5) = 0

<=> (x - 5)(x + 4) = 0

<=> x - 5 = 0 hoặc x + 4 = 0

<=> x = 5 hoặc x = -4

b) pt

<=> (2x - 1)(2x - 1 - 2x - 1) = 0

<=> (2x - 1).(-2)=0

<=> 2x - 1 = 0

<=> x = 1/2

c) pt

<=> (x - 1)(x + 1)(x^2 + 4) = 0

<=> x - 1 = 0 hoặc x + 1 = 0 hoặc x^2 + 4 = 0

<=> x = 1 hoặc x = -1

1 tháng 10 2021

a,x2−52−(x−5)=0<=>(x−5)(x+5)−(x−5)=0<=>(x−5)(x+4)=0=>x=5;x=−4.b,x2−x−6=0<=>x2−3x+2x−6=0<=>x(x−3)+2(x−3)=0<=>(x+2)(x−3)=0=>x=3;x=−2

6 tháng 8 2017

a) \(x^2-25-\left(x+5\right)=0\Leftrightarrow x^2-25-x-5=0\Leftrightarrow x^2-x-30=0\)

\(\Leftrightarrow x^2+5x-6x-30=0\Leftrightarrow x\left(x+5\right)-6\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+5\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\) vậy \(x=6;x=-5\)

b) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\Leftrightarrow4x^2-4x+1-4x^2+1=0\)

\(2-4x=0\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{2}{4}=\dfrac{1}{2}\) vậy \(x=\dfrac{1}{2}\)

c) \(x^2\left(x^2+4\right)-x^2-4=0\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+4\right)=0\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x^2+4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\x^2=-4\left(vôlí\right)\end{matrix}\right.\)

ta có : \(x^2=1\Leftrightarrow x=\pm1\) vậy \(x=1;x=-1\)

29 tháng 7 2018

- Bạn ơi cho mềnh hỏi :

x ^2 + 5x-6x-30= 0 .5 dựa

5x - 6x ,bn dựa vào chỗ nào mừa lại coá biểu thức đó ???

6 tháng 8 2017

Tìm x:

a) \(x^2-25-\left(x+5\right)=0\)

\(\Leftrightarrow x^2-x-30=0\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x=6\\ x=-5 \end{array} \right.\)

b) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)

\(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)

\(\Leftrightarrow2-4x=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

c) \(x^2\left(x^2+4\right)-x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x^2-1=0\\ x^2+4=0 \end{array} \right.\)

\(\Leftrightarrow\)\(\left[\begin{array}{} x=1\\ x=-1 \end{array} \right.\)

7 tháng 8 2017

cam on ban da giup minh

22 tháng 10 2018

a ) \(x^2-25-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5\right)-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-5-1\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)

b ) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left[\left(2x-1\right)-\left(2x+1\right)\right]=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

c ) \(x^2\left(x^2+4\right)-x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x^2+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x^2=-4\left(VL\right)\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

16 tháng 9 2017

a) \(5\left(x+7\right)-12x=15\)

\(5x+35-12x=15\)

\(-7x=15-35\)

\(-7x=-20\)

\(x=\frac{20}{7}\)

vay \(x=\frac{20}{7}\)

b) \(x^2-25-\left(x+5\right)=0\)

\(x^2-5^2-\left(x+5\right)=0\)

\(\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)

\(\left(x+5\right)\left(x-5-1\right)=0\)

\(\left(x+5\right)\left(x-6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)

vay \(\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)

c) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)

\(\left(2x-1\right)\left(2x-1\right)-\left(\left(2x\right)^2-1^2\right)=0\)

\(\left(2x-1\right)\left(2x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)

\(\left(2x-1\right)\left(2x-1-2x-1\right)=0\)

\(-2.\left(2x-1\right)=0\)

\(\Rightarrow2x-1=0\)

\(\Rightarrow x=\frac{1}{2}\)

vay \(x=\frac{1}{2}\)

d) \(x^2.\left(x^2+4\right)-x^2-4=0\)

\(x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\left(x^2-1\right)\left(x^2+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1hoacx=-1\\kotontai\end{cases}}\)

vay \(x=1\)hoac \(x=-1\)

6 tháng 6 2018

Bài 1. a) 4x - 3 = 0

⇔ x = \(\dfrac{3}{4}\)

KL.....

b) - x + 2 = 6

⇔ x = - 4

KL...

c) -5 + 4x = 10

⇔ 4x = 15

⇔ x = \(\dfrac{15}{4}\)

KL....

d) 4x - 5 = 6

⇔ 4x = 11

⇔ x = \(\dfrac{11}{4}\)

KL....

h) 1 - 2x = 3

⇔ -2x = 2

⇔ x = -1

KL...

Bài 2. a) ( x - 2)( 4 + 3x ) = 0

⇔ x = 2 hoặc x = \(\dfrac{-4}{3}\)

KL......

b) ( 4x - 1)3x = 0

⇔ x = 0 hoặc x = \(\dfrac{1}{4}\)

KL.....

c) ( x - 5)( 1 + 2x) = 0

⇔ x = 5 hoặc x = \(\dfrac{-1}{2}\)

KL.....

d) 3x( x + 2) = 0

⇔ x = 0 hoặc x = -2

KL.....

6 tháng 6 2018

Bài 3.a) 3( x - 4) - 2( x - 1) ≥ 0

⇔ x - 10 ≥ 0

⇔ x ≥ 10

0 10 b) 3 - 2( 2x + 3) ≤ 9x - 4

⇔ - 4x - 3 ≤ 9x - 4

⇔ 13x ≥1

⇔ x ≥ \(\dfrac{1}{13}\)

0 1/13

24 tháng 8 2018

a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left[x^2+2x+7+2\left(x+2\right)-5\right]=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+4x+6=0\end{matrix}\right.\)

Ta có:

\(x^2+4x+6\)

\(=x^2+2.x.2+4+2\)

\(=\left(x+2\right)^2+2\)

\(\left(x+2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+2\right)^2+2\ge2\) với mọi x

\(\Rightarrow x^2+4x+6\) vô nghiệm

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

b) \(3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(3x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

c) \(2\left(x+3\right)x^2-3x=0\)

\(\Rightarrow x\left[2\left(x+3\right)x-3\right]=0\)

\(\Rightarrow x\left(2x^2+6x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2+6x-3=0\end{matrix}\right.\)

Ta có:

\(2x^2+6x-3\)

\(=2\left(x^2+3x-\dfrac{3}{2}\right)\)

\(=2\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}-\dfrac{3}{2}\right)\)

\(=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\)

\(2\left(x+\dfrac{3}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\ge-\dfrac{15}{2}\) với mọi x

\(\Rightarrow2x^2+6x-3\) vô nghiệm

\(\Rightarrow x=0\)

24 tháng 8 2018

Cảm ơn ạ

3 tháng 10 2023

1, \(x^2\) - 9 = 0

 (\(x\) - 3)(\(x\) + 3) = 0

 \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

 vậy \(x\) \(\in\) {-3; 3}

 

  

 

3 tháng 10 2023

5, 4\(x^2\) - 36 = 0

    4.(\(x^2\) - 9) = 0

       \(x^2\) - 9 = 0

       (\(x\) - 3)(\(x\) + 3) = 0

        \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)

        \(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-3; 3}

 

 

8 tháng 2 2018

2)  \(x^3-6x^2+11x-6=0\)

\(\Leftrightarrow\)\(x^3-3x^2-3x^2+9x+2x-6=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x-2\right)\left(x-1\right)=0\)

bn giải tiếp nha

3)   \(x^3-4x^2+x+6=0\)

\(\Leftrightarrow\)\(x^3-3x^2-x^2+3x-2x+6=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2-x-2\right)=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x-2\right)\left(x+1\right)=0\)

lm tiếp nha

4)  \(x^3-3x^2+4=0\)

\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\)\( \left(x+1\right)\left(x-2\right)^2=0\)

lm tiếp nha

7 tháng 2 2018

Mk làm mẫu 1 bài cho nha !

1. <=> (x^3-x^2)+(5x^2-5x)+(6x-6) = 0

<=> (x-1).(x^2+5x+6) = 0

<=> (x-1).[(x^2+2x)+(3x+6)] = 0

<=> (x-1).(x+2).(x+3) = 0

<=> x-1=0 hoặc x+2=0 hoặc x+3=0

<=> x=1 hoặc x=-2 hoặc x=-3

Vậy ..............

Tk mk nha