Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: \(\hept{\begin{cases}x\ge\frac{3}{2}\\y\ge\frac{3}{2}\end{cases}}\)
Xét y = 0 => PT vô nghiệm
Xét y khác 0:
Ta có: \(x^3+y^3-8xy\sqrt{2\left(x^2+y^2\right)}+7x^2y+7xy^2=0\)
\(\Leftrightarrow x^3+y^3+7xy\left(x+y\right)=8xy\sqrt{2\left(x^2+y^2\right)}\)
\(\Leftrightarrow\frac{\left(x^3+y^3\right)}{y^3}+\frac{7xy\left(x+y\right)}{y^3}=\frac{8xy\sqrt{2\left(x^2+y^2\right)}}{y^3}\)
\(\Leftrightarrow\left(\frac{x}{y}\right)^3+1+7\cdot\frac{x}{y}\cdot\left(1+\frac{x}{y}\right)=8\cdot\frac{x}{y}\cdot\sqrt{2+2\left(\frac{x}{y}\right)^2}\)
Đặt \(\frac{x}{y}=t>0\) khi đó: \(PT\Leftrightarrow t^3+1+7t\left(1+t\right)=8t\sqrt{2\left(1+t^2\right)}\)
\(=\left[8t\sqrt{2\left(1+t\right)^2}-8t\left(t+1\right)\right]+8t\left(t+1\right)\)
\(\Leftrightarrow t^3-t^2-t+1=8t\cdot\frac{2\left(1+t^2\right)-\left(t+1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow t^2\left(t-1\right)-\left(t-1\right)=8t\cdot\frac{2+2t^2-t^2-2t-1}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow\left(t-1\right)^2\left(t+1\right)=8t\cdot\frac{\left(t-1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow\left(t-1\right)^2\left[t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}\right]=0\)
Mà \(t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}=\frac{t\left(\sqrt{2\left(1+t^2\right)}+t+1\right)+\sqrt{2\left(1+t^2\right)}+t}{\sqrt{2\left(1+t^2\right)}+t+1}>0\)
\(\Rightarrow t-1=0\Leftrightarrow t=1\Leftrightarrow\frac{x}{y}=1\Rightarrow x=y\)
Khi đó \(\sqrt{y}-\sqrt{2x-3}+2x=6\)
\(\Leftrightarrow\sqrt{x}-\sqrt{2x-3}=6-2x\)
\(\Leftrightarrow\frac{x-2x+3}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)
\(\Leftrightarrow\frac{3-x}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)
\(\Leftrightarrow\left(x-3\right)\left(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}\right)=0\)
Nếu \(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}=0\)
\(\Leftrightarrow\frac{1}{\sqrt{x}+\sqrt{2x-3}}=2\)
\(\Leftrightarrow\sqrt{x}+\sqrt{2x-3}=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{x}=\frac{\frac{13}{2}-2x}{2}\) (CMT)
\(\Leftrightarrow4\sqrt{x}=13-4x\)
\(\Leftrightarrow16x=169-104x+16x^2\)
\(\Leftrightarrow16x^2-120x+169=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=\frac{15+2\sqrt{14}}{4}\\x=y=\frac{15-2\sqrt{14}}{4}\end{cases}}\)
Nếu \(x-3=0\Rightarrow x=y=3\)
Vậy ta có 3 cặp số (x;y) thỏa mãn: ...
Thử lại ta thấy cặp nghiệm vô tỉ:
\(x=y=\frac{15\pm2\sqrt{14}}{4}\) không thỏa mãn nên ta chỉ có 1 cặp nghiệm thỏa mãn:
\(x=y=3\)
ĐKXĐ: \(x\ge\frac{3}{2}\)
PT (=) \(\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=7\)
(=) \(\sqrt{2x-3}+1+\sqrt{2x-3}+4=7\)
(=) \(2\sqrt{2x-3}=2\) (=) \(\sqrt{2x-3}=1\)(=) 2x = 4 (=) x = 2 ( Thỏa mãn điều kiện )
Vậy x=2
a) \(x^2-5+\sqrt{x+5}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+\sqrt{x+5}=0\)(tự làm tiếp)
b) Đề hơi sai sai
c) Mik chưa nghĩ ra
d) \(\left(\sqrt{1-2x}-1\right)+\left(\sqrt{1+2x}-1\right)+x^2=0\)
\(\frac{-2x}{\sqrt{1-2x}+1}+\frac{2x}{\sqrt{1+2x}+1}+x^2=0\)(tự lm tiếp)
1)\(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\\y^2+x+2y\sqrt{x}-y^2x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=x-y-1\\\left(y+\sqrt{x}\right)^2-y^2x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2\sqrt{x}+1=x-y-1\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x}-y=2\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)
Đặt \(\hept{\begin{cases}\sqrt{x}=a\left(\ge0\right)\\y=b\end{cases}}\)
=> hệ phương trình \(\Leftrightarrow\hept{\begin{cases}2a-b=2\\\left(b+a-ab\right)\left(b+a+ab\right)=0\end{cases}}\)
Tham khảo nhé~
a, \(\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow x-2=3\Leftrightarrow x=5\)
b, \(\sqrt{x^2-10x+25}=x+3\Leftrightarrow\sqrt{\left(x-5\right)^2}=x+3\)
\(\Leftrightarrow x-5=x+3\Leftrightarrow0\ne8\)( vô nghiệm )
Em tìm điều kiện xác định của bài toán.
Sau đó bình phương hai vế lên (cả hai vế đều >0) xem ra kết quả gì?
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\4x^2-8x+4=x^2-2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x^2-6x=0\\x\ge1\end{matrix}\right.\Leftrightarrow x=2\)
Cám mơn nha