Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(4A=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
\(\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
\(=\frac{4\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{16\left(x+y\right)z\left(x+y\right)}{xyz}\)
\(=\frac{16\left(x+y\right)^2}{xy}\ge\frac{64xy}{xy}=64\)
\(\Rightarrow A\ge16\)
Đấu = xảy ra khi \(t=2z=4x=4y=1\)
x;y;z;t >0 áp dụng bất đẳng thức Cô-si cho 2 số dương ta có :
=\(x+y\ge2\sqrt{xy}\)
=\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)
=\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)
nhân các vế tương ứng ta có:
\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)
mà x+y+z+t=2
\(\left(x+y\right)\left(x+y+z\right)2\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)
=\(\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)
=\(\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)
\(\Rightarrow B=\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge\frac{16xyzt}{xyzt}=16\)
vậy minB=16 khi\(\hept{\begin{cases}x=y\\x+y=z\\x+y+z=t\end{cases}};x+y+z+t=2\Rightarrow x=y=0.25;z=0.5;t=1\)
Câu a:
\((x+y+1)^2=3(x^2+y^2+1)\)
\(\Leftrightarrow x^2+y^2+1+2x+2y+2xy=3(x^2+y^2+1)\)
\(\Leftrightarrow 2x^2+2y^2+2-2x-2y-2xy=0\)
\(\Leftrightarrow (x^2+y^2-2xy)+(x^2-2x+1)+(y^2-2y+1)=0\)
\(\Leftrightarrow (x-y)^2+(x-1)^2+(y-1)^2=0\)
\(\Rightarrow (x-y)^2=(x-1)^2=(y-1)^2=0\)
\(\Rightarrow x=y=1\)
Vậy PT có nghiệm $(x,y)=(1,1)$
Câu c:
Ta thấy:
\(x^6+3x^3+1=(x^6+2x^3+1)+x^3>x^6+2x^3+1=(x^3+1)^2\)
\(x^6+3x^3+1< x^6+4x^3+4=(x^3+2)^2\)
Do đó:
\((x^3+1)^2< x^6+3x^3+1< (x^3+2)^2\)
\(\Rightarrow (x^3+1)^2< y^4< (x^3+2)^2\). Theo nguyên lý kẹp suy ra không tồn tại $y$ nguyên dương thỏa mãn điều kiện trên. Kéo theo không tồn tại $x$
Vậy không tồn tại $x,y$ thỏa mãn pt đã cho.
Không mất tính tổng quát.
g/s : \(x\ge y\ge z\)\(\ge1\)
Theo bài ra ta có: \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)⋮xyz\)
=> \(\left(xy^2z+yz+xy+1\right)\left(zx+1\right)⋮xyz\)
=> tồn tại số nguyên dương k sao cho: \(xy+yz+zx+1=k.xyz\)
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=k\)
=> \(k\le1+1+1+1=4\)(1)
TH1: k = 4 khi đó dấu "=" của bất đẳng thức (1) xảy ra khi và chỉ khi x=y=z=1 ( tm)
TH2: k=3
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=3\)
=>\(3\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z^3}\)
=> \(3\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\)
=> \(2\le\frac{1}{y}+\frac{1}{y}+\frac{1}{y^2}=\frac{2}{y}+\frac{1}{y^2}\)=> y=1
Với z=1; y=1 => \(\frac{1}{x}+\frac{1}{x}=1\Rightarrow x=2\)
Vậy x=2, y=z=1 ( thử vào thỏa mãn)
TH3: k=2
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{zyx}=2\)
=> \(2\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\)
=> \(1\le\frac{2}{y}+\frac{1}{y^2}\)=> y=2 hoặc y=1
Với y=1 => \(\frac{1}{x}+\frac{1}{x}=0\left(loai\right)\)
Với y=2 => \(\frac{1}{x}+\frac{1}{2x}=\frac{1}{2}\Rightarrow x=3\)
Vậy x=3; y=2; z=1 ( thử vào thỏa mãn)
TH4: K=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=1\)
=> \(1\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 hoặc z=2 hoặc z=3
Với z=1 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=0\)loại
Với \(z=2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
=> \(\frac{1}{2}\le\frac{2}{y}+\frac{1}{2y^2}\)=> y=1 (loại), y=2 (loại ); y=3 => x=7 ; y=4 => x= 9/2(loại); y>5 loại
Với z =3 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3}+\frac{1}{3xy}=1\)=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3xy}=\frac{2}{3}\)
=> \(\frac{2}{3}\le\frac{2}{y}+\frac{1}{3y^2}\)=> y=1 ( loại ), y=2 => x=7 (tm) , y=3 => x=10/3 (loại); y>4 ( loại)
TH này x=7; y=2; z=1 ( thử vào ko thỏa mãn) hoặc x=7; y=3 ; z=1 ( thử vào ko thỏa mãn)
Vậy: (x; y; z) là bộ ba số (1; 1; 1), (3; 2; 1); (2; 1;1 ) và các hoán vị của chúng
Ps: Cầu một cách ngắn gọn hơn! Thanks
Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
Giả sử \(x\ge y\ge z\ge t\)
Có 5(x+y+z+t) = 2xyzt
<=> \(2=\dfrac{5}{yzt}+\dfrac{5}{xyz}+\dfrac{5}{xyt}+\dfrac{5}{xzt}+\dfrac{10}{xyzt}\le\dfrac{20}{t^3}+\dfrac{10}{t^4}\le\dfrac{30}{t^3}\)
<=> t3 \(\le15\)
<=> \(\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
TH1: t = 1
<=> \(2=\dfrac{5}{yz}+\dfrac{5}{xyz}+\dfrac{5}{xy}+\dfrac{5}{xz}+\dfrac{10}{xyz}=\dfrac{5}{xy}+\dfrac{5}{yz}+\dfrac{5}{zx}+\dfrac{15}{xyz}\)
\(\le\dfrac{15}{z^2}+\dfrac{15}{z^3}\le\dfrac{30}{z^2}\)
<=> z2 \(\le15\)
<=> \(\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)
- Với z = 1
PT <=> 5 (x+y+2) + 10 = 2xy
<=> (2x-5)(2y-5) = 65
<=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=35\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=9\\y=5\end{matrix}\right.\end{matrix}\right.\)
Vậy (x;y;z;t) = (35;3;1;1) hoặc (9;5;1;1) và có hoán vị
- Với z = 2;3 => Vô nghiệm
TH2: t = 2
PT <=> 5(x+y+z) + 20 = 4xyz
<=> \(4=\dfrac{5}{xy}+\dfrac{5}{yz}+\dfrac{5}{zx}+\dfrac{20}{xyz}\le\dfrac{35}{z^2}\)
<=> \(\left[{}\begin{matrix}z=1\left(l\right)\\z=2\left(c\right)\end{matrix}\right.\)
<=> 5(x+y+4) + 10 = 8xy
<=> (8x-5)(8y-5) = 265
=> Vô nghiệm
KL: Vậy (x;y;z;t) = (35;3;1;1) hoặc (9;5;1;1) và có hoán vị