Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^2=yz\\y^2=xz\\z^2=xy\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{y}=\frac{z}{x}\\\frac{x}{y}=\frac{y}{z}\\\frac{z}{x}=\frac{y}{z}\end{cases}\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Rightarrow x=y=z}\)
Bạn kia giải sai rồi!! xyz = yxz thì chắc gì x = y = z? Giải: Cộng các đẳng thức trên với nhau ta được: x 2 + y 2 + z 2 = xy + yz + zx ⇔2 x 2 + y 2 + z 2 = 2 xy + yz + zx ⇔ x 2 − 2xy + y 2 + y 2 − 2yz + z 2 + z 2 − 2xz + x 2 = 0 ⇔ x − y 2 + y − z 2 + z − x 2 = 0 Mà: x − y 2 ≥ 0 y − z 2 ≥ 0 z − x 2 ≥ 0 ⇒ x − y 2 + y − z 2 + z − x 2 ≥ 0 Do đó dấu "=" xảy ra khi ⇔x = y = z
Ta có: \(x^2=yz=>x.x=y.z=\frac{x}{y}=\frac{z}{x}\left(1\right)\)
\(y^2=xz=>y.y=x.z=\frac{x}{y}=\frac{y}{z}\left(2\right)\)
\(z^2=xy=>z.z=x.y=\frac{z}{x}=\frac{y}{z}\left(3\right)\)
\(Từ\left(1\right),\left(2\right),\left(3\right)\)ta được: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\)
Với \(\frac{x}{y}=1=>x=y\left(4\right)\)
Với \(\frac{y}{z}=1=>y=z\left(5\right)\)
Từ (4) và (5) suy ra: x = y = z
=> Đpcm
Ta có:\(\frac{xy}{x+y}=\frac{yz}{y+z}\Rightarrow xy\left(y+z\right)=yz\left(x+y\right)\Leftrightarrow xy^2+xyz=xyz+y^2z\Leftrightarrow xy^2=y^2z\Rightarrow x=z\)(1)
\(\frac{yz}{y+z}=\frac{xz}{x+z}\Rightarrow yz\left(x+z\right)=xz\left(y+z\right)\Leftrightarrow xyz+yz^2=xyz+xz^2\Leftrightarrow yz^2=xz^2\Rightarrow y=x\)(2)
Từ (1)và(2)suy ra:x=y=z
\(\Rightarrow x^2=xy,y^2=yz,z^2=xz\)
\(\Rightarrow M=\frac{xy+yz+xz}{xy+yz+xz}=1\)
Vậy M=1