\(\frac{x}{4}-\frac{1}{9}=\frac{1}{2}\left(xthuộcZ\right)\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)

hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)

d: =>x+1;x-2 khác dấu

Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)

Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)

e: =>x-2>0 hoặc x+2/3<0

=>x>2 hoặc x<-2/3

13 tháng 6 2015

b)xy=x:y=>y2=1

=>y=1 hoặc y=-1

*)y=1

=>x+1=x

=>0x=-1(L)

*)y=-1

=>x-1=-x

=>2x=1

=>x=1/2

              Vậy y=-1 x=1/2

c)xy=x:y=>y2=1

=>y=1 hoặc y=-1

*)y=1

=>x-1=x

=>0x=1(L)

*)y=-1

=>x+1=-x

=>2x=-1

=>x=-1/2

Vậy y=-1 x=-1/2

d)x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9

=>(x+y+z)2=9

=>x+y+z=3 hoặc x+y+z=-3

*)x+y+z=3

=>x=-5:3=-5/3

y=9:3=3

z=5:3=5/3

*)x+y+z=-3

=>x=-5:(-3)=5/3

y=9:(-3)=-3

z=5:(-3)=-5/3

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

29 tháng 8 2017

hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi

12 tháng 9 2018

Lí luận chung cho cả 3 câu :

Vì GTTĐ luôn lớn hơn hoặc bằng 0 

a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)

b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)

c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)

\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)

\(\Rightarrow2\left(x+y+z\right)=0,2\)

\(\Rightarrow x+y+z=0,1\)

Từ đây tìm đc x, y, z

21 tháng 11 2019

a

\(\left(x-1\right)^{2012}\ge0;\left(y-2\right)^{2010}\ge0;\left(x-z\right)^{2008}\ge0\)

\(\Rightarrow VT\ge0\)

Dấu "=" xảy ra tại \(x=z=1;y=2\)

b

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)

Ta có:

\(x^2+y^2+z^2=116\)

\(\Leftrightarrow4k^2+9k^2+16k^2=116\)

\(\Leftrightarrow k^2=4\Rightarrow k=2;k=-2\)

Thế ngược lên trên,àm nốt

c

\(\left||x-2|-3\right|=4\)

\(\Leftrightarrow\orbr{\begin{cases}\left|x-2\right|-3=4\\\left|x-2\right|-3=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left|x-2\right|=1\\\left|x-2\right|=-1\left(voli\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

d

\(xy+2x-y=5\)

\(\Leftrightarrow x\left(y+2\right)-\left(y+2\right)=3\)

\(\Leftrightarrow\left(y+2\right)\left(x-1\right)=3=1\cdot3=3\cdot1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)

Lập bảng làm nốt

đ

Lập bảng xét dâu ik ( trong NCPT toán 7 tập 2 có ) hoặc chia khoảng nếu ko bt bảng xét dấu như thế này,dù hơi dài:v

\(\left|x-2\right|=x-2\Leftrightarrow x-2\ge0\Leftrightarrow x\ge2\)

\(\left|x-2\right|=2-x\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)

\(\left|3-2x\right|=3-2x\Leftrightarrow3-2x\ge0\Leftrightarrow2x\le3\Leftrightarrow x\le\frac{3}{2}\)

\(\left|3-2x\right|=2x-3\Leftrightarrow3-2x< 0\Leftrightarrow......\Leftrightarrow x>\frac{3}{2}\)

Chia khoảng đi nha !

P/S:Ê trả ơn bằng cách coi bài kiểm tra sử nha !

25 tháng 1 2017

a) Ta có: \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|\ge0\)

\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+\frac{3}{4}\right|=0\\\left|x-\frac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+\frac{3}{4}=0\\y-\frac{1}{5}=0\\x+y+z=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=\frac{-3}{4}\\y=\frac{1}{5}\\z=0-\frac{-3}{4}-\frac{1}{5}=\frac{11}{20}\end{matrix}\right.\)

Vậy \(x=\frac{-3}{4};y=\frac{1}{5};z=\frac{11}{20}\)

b) \(\left|x+\frac{3}{4}\right|+\left|y-\frac{2}{3}\right|+\left|z-\frac{1}{2}\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+\frac{3}{4}\right|=0\\\left|y-\frac{2}{3}\right|=0\\z+\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+\frac{3}{4}=0\\y-\frac{2}{3}=0\\z+\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=\frac{-3}{4}\\y=\frac{2}{3}\\z=\frac{-1}{2}\end{matrix}\right.\)

Vậy \(x=\frac{-3}{4};y=\frac{2}{3};z=\frac{-1}{2}\)

d) \(\left|x+1\right|+\left|x^2-1\right|=0\)

\(\Rightarrow\left[\begin{matrix}\left|x+1\right|=0\\\left|x^2-1\right|=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x+1=0\\x^2-1=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=-1\\x=\pm1\end{matrix}\right.\)

Vậy \(x\in\left\{1;-1\right\}\)

17 tháng 2 2017

thiếu phần c) rồi bạn ơi

25 tháng 12 2019

1)

a, \(\frac{x-7}{6}\) = \(\frac{2^3}{16}\)

⇒ 16 (x-7) = 6.23

⇒ 16x - 112 = 48

⇒ x = \(\frac{48+112}{16}\) = 10

Vậy: x = 10

b, (-0,75x) : 3 = \(\left(-2\frac{1}{2}\right)\) : 0,125

⇒ -0,25x = -2,5 : 0,125 =-20

⇒ x = \(\frac{-20}{-0,25}\) = 80

Vậy: x = 80

d, |2,6−x|=1,5

Hoặc 2,6−x=1,5

⇒ x = 2,6 -1,5 = 1,1

Hoặc 2,6−x=-1,5

⇒ x = 2,6 - (-1,5) = 4,1

Vậy: x ∈ {1,1; 4,1}

e, |x|=2019 và x > 0

Vì x > 0 nên x = - 2019

25 tháng 12 2019

2)

a, \(\frac{x}{4}\) = \(\frac{y}{9}\) và x - y = 90 (ko có z trong phép tính, chắc bạn nhầm lẫn)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{4}\) = \(\frac{y}{9}\) = \(\frac{x-y}{4-9}\) =\(\frac{90}{-5}\) = -18

+ \(\frac{x}{4}\) = -18 ⇒ x = -18 . 4 = -72

+ \(\frac{y}{9}\) = -18 ⇒ y = -18 . 9 = -162

Vậy: x = -72, y = -162

Lát mình làm tiếp nha mn

24 tháng 9 2020

a) Vì |x - 3,5| ≥ 0∀x

|4,5 - y| ≥ 0∀y

=> |x - 3,5| + |4,5 - y| ≥ 0 ∀x,y

Dấu " = " xảy ra khi và chỉ khi |x - 3,5| = 0 hoặc |4,5 - y| = 0 => x = 3,5 hoặc y = 4,5

Vậy GTNN = 0 khi x = 3,5;y = 4,5

b) |x - 2| ≥ 0 ∀x

|3 - y| ≥ 0 ∀y

=> |x - 2| + |3 - y| ≥ 0 ∀x,y

Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x-2=0\\3-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Vậy GTNN = 0 <=> x = 2,y = 3

c) \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|=0\)

\(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-5\right|\ge0\forall z\end{matrix}\right.\)

=> \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|\ge0\forall x,y,z\)

Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z-5\right|=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{3}{4}\\z=5\end{matrix}\right.\)

Vậy GTNN = 0 khi x = -2/3,y = 3/4,z = 5

Bài cuối tự làm :)))