Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0
[y-4] \(\ge\) 0
Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1
Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0
Tự tính ra
Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé
Xin lỗi nhiều tại mình o tìm được kí hiệu đó
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x+y}{5}=\dfrac{x-y}{8}=\dfrac{x+y+x-y}{5+8}=\dfrac{2x}{13}=\dfrac{4x}{26}\)
Ta có:
\(\dfrac{x+y}{5}=\dfrac{xy}{26};\dfrac{x+y}{5}=\dfrac{4x}{26}\\ \Rightarrow\dfrac{xy}{26}=\dfrac{4x}{26}\Rightarrow y=4\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x+y}{5}=\dfrac{x-y}{8}=\dfrac{x+y-x+y}{5-8}=\dfrac{2y}{-3}\)
Ta có:
\(\dfrac{x-y}{8}=\dfrac{xy}{26};\dfrac{x-y}{8}=\dfrac{2y}{-3}\\ \Rightarrow\dfrac{xy}{26}=\dfrac{2y}{-3}\Rightarrow-3xy=52y\Leftrightarrow-3x=52\Rightarrow x=\dfrac{-52}{3}\)
Vậy \(x=-\dfrac{52}{3};y=4\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{y+x+t}=\dfrac{y}{z+t+x}=\dfrac{y}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{matrix}\right.\)
\(\Rightarrow x=y=z=t\)
Thay vào P ta được :
\(P=1+1+1+1=4\)
Theo đề bài, ta có:
\(\dfrac{3x}{4}=\dfrac{y}{2}=\dfrac{3z}{5}\) và x - z = 15
\(\Rightarrow\dfrac{3x}{4}=\dfrac{y}{2}\Rightarrow6x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}\) (1)
\(\Rightarrow\dfrac{y}{2}=\dfrac{3z}{5}\Rightarrow5y=6z\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\) (2)
(1)(2) \(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}=\dfrac{x-z}{4-5}=-\dfrac{15}{1}=-15\)
\(\Rightarrow x=-60;y=-90;z=-75\)
\(\Rightarrow x+y+z=-225\)
a/ \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{3}=0\)
\(\Leftrightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Vậy ..............
b, \(\dfrac{-12}{-37}=\dfrac{12}{37}< \dfrac{12}{36}=\dfrac{13}{39}< \dfrac{13}{38}\)
\(\Leftrightarrow\dfrac{13}{38}>\dfrac{-12}{-37}\)
a)\(\text{|}x+\dfrac{3}{4}\text{|}-\dfrac{1}{3}=0\)
=>\(\text{|}x+\dfrac{3}{4}\text{|}=\dfrac{1}{3}\)
=>\(x+\dfrac{3}{4}=-\dfrac{1}{3}\)hoặc\(x+\dfrac{3}{4}=\dfrac{1}{3}\)
=>\(x=-\dfrac{13}{12}\)hoặc\(x=-\dfrac{5}{12}\)
Vậy...
b)\(\dfrac{13}{38}\) và \(\dfrac{-12}{-37}\)
Ta có:\(\dfrac{-12}{-37}=\dfrac{12}{37}< \dfrac{12}{36}=\dfrac{1}{3}=\dfrac{13}{39}< \dfrac{13}{38}\)
=>\(\dfrac{13}{38}>\dfrac{-12}{-37}\)
Đề sai bạn nhé. Đưa dữ kiện 3 ẩn bắt tính biểu thức chứa 2 ẩn làm sao làm được ?
Bạn kiểm tra lại nha
\(\left\{{}\begin{matrix}x\left(x+y+z\right)=7\\y\left(x+y+z\right)=3\\z\left(x+y+z\right)=15\end{matrix}\right.\) (đoán là đề vậy thôi vì bạn viết thiếu)
\(\Rightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=7+3+15\)\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=25\)
\(\Rightarrow\left(x+y+z\right)^2=25\)
\(\Rightarrow x+y+z=\pm5\)
....
\(\left\{{}\begin{matrix}xy=\dfrac{6}{7}\\yz=\dfrac{7}{12}\\xz=2\end{matrix}\right.\)
\(\Rightarrow xy.yz.xz=\dfrac{6}{7}.\dfrac{7}{12}.2\)
\(\Rightarrow xyz^2=1\)
\(\Rightarrow xyz=\pm1\)
...
tìm x,y,z
a,x(x+y+z)=7,y(x+y+z)=3,z(x+y+z)x(x+y+z)=7,y(x+y+z)=3,z(x+y+z)=6
b,xy=67,yz=712,xz=2