Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\&xy=1200\)
\(\Leftrightarrow\dfrac{15}{20}=\dfrac{x-9}{y-12}\Leftrightarrow\dfrac{3}{4}=\dfrac{x-9}{y-12}\)
\(\Rightarrow\dfrac{9}{12}=\dfrac{x-9}{y-12}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{9}{12}=\dfrac{x-9}{y-12}=\dfrac{x-9+9}{y-12+12}=\dfrac{x}{y}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{xy}{y^2}=\dfrac{x^2}{xy}\)
Từ \(\dfrac{3}{4}=\dfrac{xy}{y^{^2}}\Rightarrow\dfrac{3}{4}=\dfrac{1200}{y^2}\Rightarrow y^2=1200.\dfrac{4}{3}=1600\)
\(\Rightarrow y=\sqrt{1600}=\pm40\)
+ TH1: \(y=40\Rightarrow x=30\)
\(\dfrac{15}{x-9}=\dfrac{40}{z-24}\Rightarrow z=80\) (tự giải pt)
+ TH2: \(y=-40\Rightarrow x=-30\)
\(\dfrac{15}{x-9}=\dfrac{40}{z-4}\Rightarrow z=-80\) (tự giải pt)
Vậy, các cặp \(\left(x;y;z\right)\) thỏa mãn là \(\left(30;40;80\right)\&\left(-30;-40;-80\right)\)
\(b.15x=-10y=6z\&xyz=30000\)
\(\Rightarrow\left\{{}\begin{matrix}15x=-10y\\-10y=6z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-10}=\dfrac{y}{15}\\\dfrac{y}{6}=\dfrac{z}{-10}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-20}=\dfrac{y}{30}\\\dfrac{y}{30}=\dfrac{z}{-50}\end{matrix}\right.\Rightarrow\dfrac{x}{-20}=\dfrac{y}{30}=\dfrac{z}{-50}\)
Đặt \(\dfrac{x}{-20}=\dfrac{y}{30}=\dfrac{z}{-50}=k\Rightarrow x=-20k;y=30k;z=-50k\)
\(\Rightarrow xyz=30000\Rightarrow-20k.30k.\left(-50k\right)=30000\Rightarrow30000k^3=30000\)
\(\Rightarrow k^3=1\Rightarrow k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=-20\\y=30\\z=-50\end{matrix}\right.\)
a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
⇒2x = 3.30 = 90 ⇒ x = 45
3y = 3.60 = 180 ⇒ y = 60
z = 3.28 = 84
Ý b) có gì đó sai sai ?
c)Ta có :
\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dãy tỉ số = nhau, ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒x = 5.15 = 75
y = 5.10 = 50
z = 5.6 = 30
d)Ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)
⇒ x = 2k ; y = 3k ; z = 5k
⇒ xyz = 2k.3k.5k = 30k3 = 810
⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15b: Ta có: x/y=7/9
nên x/7=y/9
=>x/49=y/63
Ta có: y/z=7/3
nên y/7=z/3
=>y/63=z/27
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)
Do đó: x=-735/13; y=-945/13; z=-405/13
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)
Do đó: x=14; y=40; z=64
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)
Do đó: x=24; y=15; z=6
a) Ta có:
\(x+y+z=49\Rightarrow12x+12y+12z=588\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{588}{49}=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.3:2\\y=12.4:3\\z=12.5:4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)
\(x-y+100=z\Rightarrow x-y-z=-100\)
\(\dfrac{x}{4}=\dfrac{y}{3}\Rightarrow\dfrac{x}{20}=\dfrac{y}{15};\dfrac{y}{5}=\dfrac{z}{3}\Rightarrow\dfrac{y}{15}=\dfrac{z}{9}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
\(\Rightarrow x=20.25=500;y=15.25=375;z=9.25=225\)
b/ \(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}\)
\(\Rightarrow\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}=\dfrac{5z-25-4y-12-3x+3}{30-16-6}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=2\\\dfrac{y+3}{4}=2\\\dfrac{z-5}{6}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=5\\z=17\end{matrix}\right.\)
c/ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=a\Rightarrow\left\{{}\begin{matrix}x=2a\\y=3a\\z=5a\end{matrix}\right.\) \(\Rightarrow xyz=2a.3a.5a=30a^3=-30\Rightarrow a^3=-1\Rightarrow a=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=2a=-2\\y=3a=-3\\z=5a=-5\end{matrix}\right.\)
d/ \(\dfrac{x}{1,1}=\dfrac{y}{1,3}=\dfrac{z}{1,4}\Rightarrow\dfrac{2x}{2,2}=\dfrac{y}{1,3}=\dfrac{z}{1,4}=\dfrac{2x-y}{2,2-1,3}=\dfrac{5,5}{0,9}=\dfrac{55}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1,1.55}{9}=\dfrac{121}{18}\\y=\dfrac{1,3.55}{9}=\dfrac{143}{18}\\z=\dfrac{1,4.55}{9}=\dfrac{77}{9}\end{matrix}\right.\) Nghi ngờ bạn chép đề câu này sai, số xấu quá
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
Đặt \(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{12}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=9k\\z=12k\end{matrix}\right.\)
=> x.y.z = 5k.9k.12k <=> 540k3 = 20
k3 = 20:540
k3 = \(\dfrac{1}{27}\)
<=> \(\dfrac{1}{27}=\dfrac{1^3}{3^3}\) => k = \(\dfrac{1}{3}\)
\(\left\{{}\begin{matrix}x=5k=5.\dfrac{1}{3}=\dfrac{5}{3}\\y=9k=9.\dfrac{1}{3}=3\\z=12k=12.\dfrac{1}{3}=4\end{matrix}\right.\)
Vậy x=5/3 ; y=3 và z=4
Lời giải:
Ta có:
\(\frac{x}{5}=\frac{y}{9}=\frac{z}{12}\Rightarrow \left(\frac{x}{5}\right)^3=\left(\frac{y}{9}\right)^3=\left(\frac{z}{12}\right)^3=\frac{x}{5}.\frac{y}{9}.\frac{z}{12}=\frac{20}{540}=\frac{1}{27}=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow \left\{\begin{matrix} \frac{x}{5}=\frac{1}{3}\\ \frac{y}{9}=\frac{1}{3}\\ \frac{z}{12}=\frac{1}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{5}{3}\\ y=3\\ z=4\end{matrix}\right.\)
Vậy \((x,y,z)=(\frac{5}{3};3;4)\)