K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Hơi tắt nhá

a) Đặt \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=A\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

mà A\(\le0\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\)​ phải bằng 0 đê thỏa mãn điều kiện

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy....

b;c)I hệt câu a nên làm tương tự nhá

d)

Hơi tắt nhá

a) Đặt \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=B\)

B=\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\)

Thay ra ta tính đc :\(z=-\dfrac{11}{20}\)

Vậy....

1 tháng 8 2017

thanks bn nha

1 tháng 8 2017

a,

\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)

Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)

d,

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)

1 tháng 8 2017

Bạn mới hỏi ở dưới rồi :v

9 tháng 6 2018

Bài 1 :

\(3x+5=2\left(x-\frac{1}{4}\right)\)

\(\Leftrightarrow3x+5=2x-\frac{1}{2}\)

\(\Leftrightarrow5+\frac{1}{2}=2x-3x\)

\(\Leftrightarrow\frac{11}{2}=-x\)

\(\Leftrightarrow\frac{-11}{2}=x\)

Vậy \(x=\frac{-11}{2}\)

Bài 2:

a, \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{2018}{2019}\right|\ge0\\\left|z-3\right|\ge0\end{cases}}\)

       Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)

\(\Rightarrow+,\left|x+\frac{19}{5}\right|=0\)

\(\Leftrightarrow x+\frac{19}{5}=0\)

\(\Leftrightarrow x=\frac{-19}{5}\)

\(\Rightarrow+,\left|y+\frac{2018}{2019}\right|=0\)

\(\Leftrightarrow y+\frac{2018}{2019}=0\)

\(\Leftrightarrow y=\frac{-2018}{2019}\)

\(\Rightarrow+,\left|z-3\right|=0\)

\(\Leftrightarrow z-3=0\)

\(\Leftrightarrow z=3\)

Vậy \(\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-2018}{2019}\\z=3\end{cases}}\)

b, Ta có : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)

Vì : \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y+4\right|\ge0\\\left|z-5\right|\ge0\end{cases}}\)

Mà : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)

\(\Rightarrow+,\left|x-\frac{1}{2}\right|\ge0\)

\(\Rightarrow x\inℚ\)

\(\Rightarrow+,\left|2y+4\right|\ge0\)

\(\Rightarrow y\inℚ\)

\(\Rightarrow+,\left|z-5\right|\ge0\)

\(\Rightarrow z\inℚ\)

Vậy chỉ cần \(\hept{\begin{cases}x\inℚ\\y\inℚ\\z\inℚ\end{cases}}\)thì thỏa mãn.

24 tháng 3 2020

234*(-26)+134*26

28 tháng 9 2020

a) Đề chắc là: \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\)

Ta có: \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\left(\forall x,y,z\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|=0\\\left|y+\frac{1890}{1975}\right|=0\\\left|z-2004\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{378}{395}\\z=2004\end{cases}}\)

28 tháng 9 2020

b) Ta có: \(\left|x+\frac{9}{2}\right|+\left|y+\frac{4}{3}\right|+\left|z+\frac{7}{2}\right|\ge0\left(\forall x,y,z\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x+\frac{9}{2}\right|=0\\\left|y+\frac{4}{3}\right|=0\\\left|z+\frac{7}{2}\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{9}{2}\\y=-\frac{4}{3}\\z=-\frac{7}{2}\end{cases}}\)

Câu 2: 

a: Ta có: \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{378}{395}\\z=2004\end{matrix}\right.\)

b: \(\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{3}{2}\right|+\left|x-y-z-\dfrac{1}{2}\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+\dfrac{3}{2}=0\\x-y-z-\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{3}{2}\\z=\dfrac{3}{2}\end{matrix}\right.\)

19 tháng 8 2017

bài 1:

a, x + |2 - x| = 6

=> |2 - x| = 6 - x (1)

=>\(\orbr{\begin{cases}2-x=6-x\\2-x=x-6\end{cases}}\Rightarrow\orbr{\begin{cases}2=6\left(ktm\right)\\x=4\left(tm\right)\end{cases}}\)

b. |x - 7| = 7 

=> \(\orbr{\begin{cases}x-7=7\\x-7=-7\end{cases}\Rightarrow\orbr{\begin{cases}x=14\left(ktm\right)\\x=0\left(tm\right)\end{cases}}}\)

c, Tương tự b

bài 2:

a, Vì \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|y+5\right|\ge0\end{cases}}\forall x,y\Rightarrow\left|x+2\right|+\left|y+5\right|\ge0\) (1)

Mà |x + 2| + |y + 5| = 0 (2)

Từ (1),(2) => \(\hept{\begin{cases}x+2=0\\y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-5\end{cases}}\)

b, tương tự a

19 tháng 8 2017

1)

a) x + | 2 - x | = 6

\(\Rightarrow\)| 2 - x | = 6 - x

\(\Rightarrow\)\(\orbr{\begin{cases}2-x=6-x\\2-x=x-6\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}2=6\\x=4\end{cases}}\)

b) | x - 7 | = 7

x - 7 = +;- 7

\(\Rightarrow\)\(\orbr{\begin{cases}x-7=7\\x-7=-7\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=14\\x=0\end{cases}}\)

c) | x + 1 | = 5

x + 1 = +;- 5

\(\Rightarrow\)\(\orbr{\begin{cases}x+1=5\\x+1=-5\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=4\\x=-6\end{cases}}\)

2) Tự làm :v