Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) (1)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}.\)
Có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}.\)
\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}.\)
=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\) và \(x-y-z=1.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{1}{-4}=\frac{-1}{4}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=-\frac{1}{4}\Rightarrow x=\left(-\frac{1}{4}\right).20=-5\\\frac{y}{15}=-\frac{1}{4}\Rightarrow y=\left(-\frac{1}{4}\right).15=-\frac{15}{4}\\\frac{z}{9}=-\frac{1}{4}\Rightarrow z=\left(-\frac{1}{4}\right).9=-\frac{9}{4}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(-5;-\frac{15}{4};-\frac{9}{4}\right).\)
Chúc bạn học tốt!
\(1+x+y+2xy^2=xy+x^2+2y^2\)
\(\Leftrightarrow\left(x^2-x\right)+\left(2y^2-2xy^2\right)+\left(xy-y\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(x-2y^2+y\right)=1\)
\(\Rightarrow\left(x-1,x-2y^2+y\right)=\left(1,1;-1,-1\right)\)
Tới đây thì đơn giản rồi nhé
Xét \(\hept{\begin{cases}x-1=1\\x-2y^2+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\2y^2-y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Cái còn lại làm tương tự
a) \(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\\= (x^3+x^2y-2x^2)-(xy+y^2-2y)+(x+y-2)+2019\\=x^2(x+y-2)-y(x+y-2)+(x+y-2)+2019\\=x^2.0-y.0+0+2019=2019\)
c) +) Với \(x + y + z = 0\) thì \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{(-z)}{y} \cdot \dfrac{(-x)}z \cdot \dfrac{(-y)}x = -1\)
+) Với \(x + y + z \ne 0\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{y+z-x}x = \dfrac{z+x-y}y = \dfrac{x+y-z}z = \dfrac{y+z-x+z+x-y+x+y-z}{x+y+z} = \dfrac{x+y+z}{x+y+z} =1\)
Ta có \(\dfrac{y+z-x}x = 1 \iff y+z-x = x \iff y+z = 2x\)
Tương tự : \(z+x = 2y ; x + y = 2z\)
Kh đó \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{2z}{y} \cdot \dfrac{2x}z \cdot \dfrac{2y}x = 8\)
a, Đặt \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=7k\\z=5k\end{matrix}\right.\)
Mà \(yz-xy-z^2=-72\)
\(\Rightarrow35k^2-28k^2-25k^2=-72\\ \Rightarrow k^2\left(35-28-25\right)=-72\\ k^2\cdot\left(-18\right)=-72\\ \Rightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
Với k = 2
\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=7\cdot2=14\\z=5\cdot2=10\end{matrix}\right.\)
Với k = -2
\(\Rightarrow\left\{{}\begin{matrix}x=4\cdot\left(-2\right)=-8\\y=7\cdot\left(-2\right)=-14\\z=5\cdot\left(-2\right)=-10\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)\in\left\{\left(8;14;10\right);\left(-8;-14;-10\right)\right\}\)
b, Đặt \(\frac{x}{2}=\frac{y}{7}=\frac{z}{8}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=7k\\z=8k\end{matrix}\right.\)
Mà \(2x^2+xy-xz=54\)
\(\Rightarrow8k^2+14k^2-16k^2=54\\ \Rightarrow k^2\left(8+14-16\right)=54\\ \Rightarrow k^2\cdot6=54\\ \Rightarrow k^2=9\\ \Rightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)
Với k = 3
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot3=6\\y=7\cdot3=21\\z=8\cdot3=24\end{matrix}\right.\)
Với k = -3
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot\left(-3\right)=-6\\y=7\cdot\left(-3\right)=-21\\z=8\cdot\left(-3\right)=-24\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)\in\left\{\left(6;21;24\right);\left(-6;-21;-24\right)\right\}\)
c, Đặt \(\frac{x+3}{5}=\frac{y-4}{3}=\frac{z-5}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k-3\\y=3k+4\\z=2k+5\end{matrix}\right.\)
Mà \(2x-3y-z=-26\)
\(\Rightarrow2\left(5k-3\right)-3\left(3k+4\right)-\left(2k+5\right)=-26\\ \Rightarrow10k-6-9k-12-2k-5=-26\\ \Rightarrow-k=-3\\ \Rightarrow k=3\\ \Rightarrow\left\{{}\begin{matrix}x=5\cdot3-3=12\\y=3\cdot3+4=13\\z=2\cdot3+5=11\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(12;13;11\right)\)
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
bình phương 3 vế :
\(\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2=\left(\frac{z}{5}\right)^2\)<=> \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)<=> \(\frac{2}{2}.\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)<=> \(\frac{2x^2}{8}=\frac{y^2}{9}=\frac{z^2}{25}\)
áp dụng t/c dãy tỉ số bằng nhau
\(\frac{2x^2}{8}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{2x^2+y^2+z^2}{8+9+25}\)\(=\)\(\frac{-72}{42}=\frac{-12}{7}\)
\(\frac{x}{2}=\frac{-12}{7}\Leftrightarrow x=\frac{-24}{7}\)
\(\frac{y}{3}=\frac{-12}{7}\Leftrightarrow y=\frac{-36}{7}\)
\(\frac{z}{5}=\frac{-12}{7}\Leftrightarrow z=\frac{-60}{7}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=K\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=K\\\frac{y}{3}=K\\\frac{z}{5}=K\end{cases}}\Rightarrow\hept{\begin{cases}x=2K\\y=3K\\z=5K\end{cases}}\)
Theo đề bài có : 2x2 + y2 + z2 = ( -72 )
Mà \(x^2\ge0\forall x\)nên \(2x^2\ge0\forall x\); \(y^2\ge0\forall y\); \(z^2\ge0\forall z\)
=> \(2x^2+y^2+z^2\ge0\forall x,y,z\)
=> Ko có giá trị thỏa mãn x,y,z
a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)
\(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)
THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)
\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)
Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)
\(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)
KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)
b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)
\(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)
Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :
\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)
\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)
\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)
Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)
\(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)
Bạn xem lại đề
Sửa đề: Tìm x, y thuộc Z biết x2 + 2x + y = xy
Bài làm:
\(x^2+2x+y=xy\)
\(x^2+2x=xy-y\)
\(x\left(x+2\right)=y\left(x-1\right)\)
\(\dfrac{x}{y}=\dfrac{x-1}{x+2}\)
Đặt xk = x - 1; yk = x + 2; k ≠ 0. Nếu k = 1 thì x = x - 1 hay 0 = -1, vô lí.
Suy ra
xk - x = -1
x(k - 1) = -1
\(x=-\dfrac{1}{k-1}\)
\(yk=2-\dfrac{1}{k-1}\)
\(y=\dfrac{2-\dfrac{1}{k-1}}{k}\)
(từ đoạn này thì phải tìm k để x và y nguyên nhưng chưa xử lí được)