Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Leftrightarrow4x^2+2y^2+4xy-20x-8y+26=0\)
\(\Leftrightarrow4x^2+4x\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+2y^2-8y+26=0\)
\(\Leftrightarrow\left(2x+y-5\right)^2+y^2+2y+1=0\)
\(\Leftrightarrow\left(2x+y-5\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y-5=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\) ( TM )
b) \(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)+\left(z^2-2z+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2+\left(z-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+3=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\\z=1\end{matrix}\right.\) ( TM )
c) \(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+2x+1\right)+\left(z^2-4z+4\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(z-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\\z=2\end{matrix}\right.\) ( TM )
A=x4+2x3z-2xz3-z4-4x2y2+2y2z2
=(x4-z4)+(2x3z-2xz3)+(-4x2y2+4y2z2)
=(x2-z2)(x2+z2)+2xz(x2-z2)-4y2(x2-z2)
=(x2-z2)(x2+z2+2xz-4y2)
=(x2-z2)((x2+z2)-4y2)
=(x2-z2)((x+z)2-4y2)
=(x2-z2)((2y)2-4y2)
=(x2-z2)(4y2-4y2)
=(x2-z2).0
=0
x2+x+1=x2+2.x.\(\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=(x+\(\frac{1}{2}\))2\(+\frac{3}{4}\)lớn hơn 0 vớimọi x
Ta có : x2 + 4y2 - 2x + 4y + 2 = 0
<=> (x2 - 2x + 1) + (4y2 + 4y + 1) = 0
<=> (x - 1)2 + (2x + 1)2 = 0
Mà : \(\left(x-1\right)^2\ge0\forall x\)
\(\left(2x+1\right)^2\ge0\forall x\)
Nên \(\orbr{\begin{cases}x-1=0\\2x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)
Ta có:
\(x^2+y^2+2z^2+4x-4y-6z-2xz+9=0\)
\(\Leftrightarrow\left(z^2-2z+1\right)+\left(y^2-4y+4\right)+\left(x^2+z^2+4-2xz+4x-4z\right)=0\)
\(\Leftrightarrow\left(z-1\right)^2+\left(y-2\right)^2+\left(x-z+2\right)^2=0\)
Vì \(\left(z-1\right)^2\ge0\) với mọi z
\(\left(y-2\right)^2\ge0\) với mọi y
\(\left(x-z+2\right)^2\ge0\) với mọi x, z
Suy ra \(\left(z-1\right)^2+\left(y-2\right)^2+\left(x-z+2\right)^2\ge0\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}\left(z-1\right)^2=0\\\left(y-2\right)^2=0\\\left(x-z+2\right)^2=0\end{matrix}\right.\)
Hay \(\left(z-1\right)^2+\left(y-2\right)^2+\left(x-z+2\right)^2=0\) khi \(\left[{}\begin{matrix}\left(z-1\right)^2=0\\\left(y-2\right)^2=0\\\left(x-z+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}z-1=0\\y-2=0\\x-z+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}z=1\\y=2\\x-z+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}z=1\\y=2\\x=-1\end{matrix}\right.\)
Vậy \(x=-1\); \(y=2\); \(z=1\)
cảm ơn nha !!!!!!!!!!!!!!