Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với \(x+y+z=0\) ta tìm được \(\left(x;y;z\right)\rightarrow\left(0;0;0\right)\)
Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
Hay: \(x+y+z=\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+z=\dfrac{1}{2}-y\\x+y=\dfrac{1}{2}-z\end{matrix}\right.\)
Thay vào đề bài ta được:
\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\) Dễ dàng tìm được x;y;z
b) Theo đề bài ta có sẵn x+y+z khác 0
Áp dụng dãy tỉ số rồi làm tương tự câu a
Sửa đề như bên dưới:v
Với \(x+y+z=0\) dễ dàng có được \(x=y=z=0\)
Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{z+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
Suy ra: \(x+y+z=\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}z+y=\dfrac{1}{2}-x\\x+z=\dfrac{1}{2}-y\\x+y=\dfrac{1}{2}-z\end{matrix}\right.\)
Thay vào ta được:
\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\)
Ok rồi:v
a/ Ta có ;
\(x+y+z=92\)
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\)
\(\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=2\Leftrightarrow x=20\\\dfrac{y}{15}=2\Leftrightarrow y=30\\\dfrac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)
Vậy .................
b/Ta có :
\(x+y-z=95\)
\(2x=3y=5z\)
\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)
\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{5}\)
Áp dụng t/x dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{5}=\dfrac{x+y-z}{15+10-5}=\dfrac{95}{19}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=5\Leftrightarrow x=75\\\dfrac{y}{10}=5\Leftrightarrow y=50\\\dfrac{z}{5}=5\Leftrightarrow z=25\end{matrix}\right.\)
Vậy ..
a, \(\dfrac{x}{2}=\dfrac{y}{3},\dfrac{y}{5}=\dfrac{z}{7},x+y+z=92\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{21}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21},x+y+z=92\)
AD t/c DTS = nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
+) \(\dfrac{x}{10}=2\Rightarrow x=20\)
+) \(\dfrac{y}{15}=2\Rightarrow y=30\)
+) \(\dfrac{z}{21}=2\Rightarrow z=42\)
b, \(2x=3y=5z,x+y-z=95\)
\(\Rightarrow\dfrac{30x}{15}=\dfrac{30y}{10}=\dfrac{30z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6},x+y-z=95\)
AD t/c DTS = nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
+) \(\dfrac{x}{15}=5\Rightarrow x=75\)
+) \(\dfrac{y}{10}=5\Rightarrow y=50\)
+) \(\dfrac{z}{6}=5\Rightarrow z=30\)
c, Bn xem lại đề bài nha!
Áp dụng t/c dãy t/s = nhau:
\(\frac{y+x+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)
\(\Rightarrow y+z+1=2x\)
\(x+z+2=2y\)
\(x+y-3=2z\)
\(x+y+z=\frac{1}{2}\)
*) \(x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-x\)Thay vào \(y+z+1=2x\)ta được \(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)
*) \(x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\) Thay vào \(x+z+2=2y\) ta được \(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)
\(\Rightarrow x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{1}{2}-\frac{4}{3}=-\frac{5}{6}\)
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau, với $x+y+z\neq 0$ ta có:
\(\frac{1}{x+y+z}=\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2(x+y+z)}{x+y+z}=2\)
\(\Rightarrow \left\{\begin{matrix} x+y+z=\frac{1}{2}\\ y+z+1=2x\\ x+z+2=2y\\ x+y-3=2z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+y+z=\frac{1}{2}\\ x+y+z+1=3x\\ x+y+z+2=3y\\ x+y+z-3=3z\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} \frac{1}{2}+1=3x\\ \frac{1}{2}+2=3y\\ \frac{1}{2}-3=3z\end{matrix}\right.\Rightarrow x=\frac{1}{2}; y=\frac{5}{6}; z=\frac{-5}{6}\)
Vậy..........
+) Với \(x+y+z=0\)
\(\Leftrightarrow\dfrac{x}{z+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=0\)
\(\Leftrightarrow x=y=z=0\left(loại\right)\)
+) Với \(x+y+z\ne0\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{z+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z=\dfrac{x+y+z}{2\left(x+y+z\right)+\left(1+1-2\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{z+y+1}=\dfrac{1}{2}\\\dfrac{y}{x+z+1}=\dfrac{1}{2}\\\dfrac{z}{x+y-2=\dfrac{1}{2}}\end{matrix}\right.\) Và \(x+y+z=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}z+y+1=2x\\x+z+1=2y\\x+y-2=2z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z+1=3x\\x+y+z+1=3y\\x+y+z-2=3z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+1=3x\\\dfrac{1}{2}+1=3y\\\dfrac{1}{2}-2=3z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}=3x\\\dfrac{3}{2}=3y\\-\dfrac{3}{2}=3z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}\\z=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy ...
Lời giải:
\(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
\(A+3=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{x+y}+1\right)\)
\(A+3=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}\)
\(A+3=2017\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
\(A+3=2017.\frac{1}{672}=\frac{2017}{672}\)
\(\Rightarrow A=\frac{2017}{672}-3=\frac{1}{672}\)
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{1}=\dfrac{x+y+z}{\left(y+z+1\right)+\left(x+z+1\right)+\left(x+y-2\right)}\)
\(=\dfrac{x+y+z}{2x+2y+2z}\)
\(TH1:x+y+z=0\)
⇒ \(\dfrac{x+y+z}{1}=0\)
⇒ \(x=y=z=0\)(loại vì trái với điều kiện đề bài )
\(TH2:z+y+z\)≠ 0
⇒ \(\dfrac{x+y+z}{2x+2y+2z}=\dfrac{x+y+z}{2.\left(x+y+z\right)}=\dfrac{1}{2}\)
Vậy \(x+y+z=\dfrac{1}{2}\)
\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\) ⇒ \(2x=y+z+1\)⇒\(2x=y+z+2\left(x+y+z\right)=2x+3y+3z\)
⇒ \(3y+3z=0\) ⇒ \(y+z=0\) ⇒ \(2x=1\) ⇒ \(x=\dfrac{1}{2}\)
\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\) ⇒ \(2y=x+z+1=x+z+2\left(x+y+z\right)=2y+3x+3z\)
⇒ \(3x+3z=0\) ⇒ \(x+z=0\) ⇒ \(2y=1\) ⇒ \(y=\dfrac{1}{2}\)
\(x+z=0\) ; \(x=\dfrac{1}{2}\)
⇒ \(z=0-\dfrac{1}{2}=\dfrac{-1}{2}\)
Vậy \(x=\dfrac{1}{2}\) ; \(y=\dfrac{1}{2}\) ; \(z=\dfrac{-1}{2}\)