K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

làm thì dễ còn xem bn có (đúng 0) chứ?

6 tháng 8 2016

t k biết làm bn làm hộ t đi

3 tháng 10 2017

1) Ta có: x/6 = y/3 = z/3 và 2x - 3y + 3z = 21

Aps dụng tính chất của dãy tỉ số bằng nhau:

x/6 = y/3 = z/3 = 2x/12 = 3y/9 = 3z/9 = (2x-3y+3z)/ (12 - 9 + 9) = 21/12 = 7/4

=> x/6 = 7/4 => x= 21/2

y/3 = 7/4 -> y= 21/4

z/3 = 7/4 -> z= 21/4

3 tháng 10 2017

1) đề nó sao ý bạn , sao lại tìm z nữa lại 2/3 ?

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{-4}=\frac{4x}{4.2}=\frac{3y}{3.\left(-4\right)}=\frac{2z}{2.\left(-4\right)}=\frac{4x+3y+2z}{8+\left(-12\right)+\left(-8\right)}=\frac{1}{-12}=\frac{-1}{12}\)

\(\frac{x}{2}=\frac{-1}{12}\Rightarrow x=\frac{-1}{6}\)

\(\frac{y}{-3}=\frac{-1}{12}\Rightarrow y=\frac{1}{4}\)

\(\frac{z}{-4}=\frac{-1}{12}\Rightarrow z=\frac{1}{3}\)

Vậy x=-1/6 ; y=1/4 và z = 1/3

3) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-3}{5}\Rightarrow\frac{x+1+y+2+z-3}{3+4+5}=\frac{18+1+2-3}{12}=\frac{18}{12}=\frac{3}{2}\)

\(\frac{x+1}{3}=\frac{3}{2}\Rightarrow x=\frac{7}{2}\)

\(\frac{y+2}{4}=\frac{3}{2}\Rightarrow y=4\)

\(\frac{z-3}{5}=\frac{3}{2}\Rightarrow z=\frac{21}{2}\)

Vậy x=7/2 ; y=4 và z=21/2

4) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x-1+y-2+z-3}{3+4+5}=\frac{30-\left(1+2+3\right)}{12}=\frac{24}{12}=2\)

\(\frac{x-1}{3}=2\Rightarrow x=7\)

\(\frac{y-2}{4}=2\Rightarrow y=10\)

\(\frac{z-3}{5}=2\Rightarrow z=13\)

Vậy x=7 ; y=10 và z=13

29 tháng 9 2019

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{-z+3}{-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{56-5}{9}\)\(=\frac{17}{3}\)

\(\Rightarrow x=\frac{37}{3},y=19,z=\frac{77}{3}\)

29 tháng 9 2019

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)\(2x+3y-z=56\)

\(\Leftrightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4};2x+3y-z=56\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{56-2-6+3}{9}=\frac{51}{9}=\frac{17}{3}\)

\(\Leftrightarrow x=\frac{37}{3};y=19;z=\frac{77}{3}\)

Vậy \(x=\frac{37}{3};y=19;z=\frac{77}{3}\)

22 tháng 10 2020

Ta có : \(\frac{x}{5}=y=\frac{z}{-2}\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{z}{-2}\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{2z}{-4}\)

Lại có : -x - y + 2z = 160

=> -(x + y - 2z) = 160

=> x + y - 2z = -160

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{1}=\frac{2z}{-4}=\frac{x+y-2z}{5+1-\left(-4\right)}=\frac{-160}{10}=-16\)

=> x = -16.5 = -80 , y = -16 , z = -16.(-2) = 32

Đặt \(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=3k\\y=8k\\z=5k\end{cases}}\)

=>  4x = 12k , 3y = 24k , 2z = 10k

=> 4x + 3y - 2z = 12k + 24k - 10k

=> 52 = 26k

=> k = 2

Với k = 2 thì x = 3.2 = 6 , y = 8.2 = 16 , z=  5.2 = 10

8x = 5y => \(\frac{x}{5}=\frac{y}{8}\)

=> \(\frac{2x}{10}=\frac{y}{8}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{10}=\frac{y}{8}=\frac{y-2x}{8-10}=\frac{-10}{-2}=5\)

=> x = 5.5 = 25,y = 5.8 = 40

6 tháng 4 2020

Đặt x2 = a (a >= 0) , y2 = b (b >= 0)

Ta có : (a + b)/10 = (a - 2b)/7 và a2b2 = 81

            (a + b)/10 = (a - 2b)/7 = [(a + b) - (a - 2b)]/10 - 7 = 3b/3 = b                  (1)

            (a + b)/10 = (a - 2b)/7 = (2a + 2b)/20 = [(2a + 2b) + (a - 2b)]/(20 + 7) = 3a/27 = a/9          (2)

Từ (1) và (2) => a/9 = b => a = 9b

Do a2b2 = 81 nên (9b)2 . b2 = 81 => 81b4 = 81 => b4 = 1 => b = 1 (vì b >= 0)

Suy ra : a = 9.1 = 9

Ta có : x2 = 9 => x = 3 hoặc x = -3

            y2 = 1 => y = 1 hoặc y = -1

Vậy : ...

P/S : Do bấm công thức Toán nó bị lỗi nên thông cảm

2 tháng 2 2017

Ta có: x/3=y/4=z/5....... 

2*x^2/2*3^2+2*y^2/2*4^2-3*z^2=-100/-25=4

x/3=4 suy ra x=12

y/4=4 ....y=16

z/5.......z=20

2 tháng 2 2017

Ta co : x:y:z=3:4:5

Hay : x/3=y/4=z/5 

=>2x^2/18=2y^2/32=3z^2/75 và 2x^2+2y^2-3z^2=-100

Áp dụng tính chất dãy tỉ số bằng nhau : 

2x^2/18=2y^2/32=3z^2/75=2x^2+2y^2-3z^2/18+32-75=-100/-25=4

Suy ra : 2x^2/18=4=>2x^2=72=>x^2=36=>x=+6

2y^2/32=4=>2y^2=128=>y^2=64=>y=+8

3z^2/75=4=>3z^2=300=>z^2=100=>z=+10

k nha , k hiu ns mk

1 tháng 10 2019

1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

                  \(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)

Vậy ....

2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

           \(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)

vậy ...

1 tháng 10 2019

3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

       \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)

         \(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)

Vậy ...