Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\frac{4}{1+4}=\frac{4}{5}=0,8\) \(z=\frac{4}{1+4}=\frac{4}{5}=0,8\)
\(y=\frac{4}{1+4}=\frac{4}{5}=0,8\)
x2+2x+y2-6y+4z^2-4z+11=0
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-6y+9\right)+\left(4z^2-4z+1\right)=0\)
<=>(x+1)2+(y-3)2+(2z-1)2=0
Vì (x+1)2\(\ge\)0;(y-3)2\(\ge\)0;(2z-1)2\(\ge\)0 => (x+1)2+(y-3)2+(2z-1)2\(\ge\)0
Dấu "=" xảy ra khi (x+1)2=(y-3)2=(2z-1)2=0 <=> x+1=y-3=2z-1=0 <=> x=-1;y=3;z=1/2
x2 + 2x + y2 - 6y + 4z2 - 4z + 11 = 0
<=> ( x2 + 2x + 1 ) + ( y2 - 6y + 9 ) + ( 4z2 - 4z + 1 ) = 0
<=> ( x + 1 )2 + ( y - 3 )2 + ( 2z - 1 )2 = 0 (*)
Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\\\left(2z-1\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2\ge0\forall x,y,z\)
Dấu "=" xảy ra tức (*) <=> \(\hept{\begin{cases}x+1=0\\y-3=0\\2z-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=3\\z=\frac{1}{2}\end{cases}}\)
Vậy ...
\(x^2+2x+y^2-6y+4z^2-4z+11=0\)
\(\Leftrightarrow x^2+2x+1+y^2-6y+9+4z^2-4z+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-3=0\\2z-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=3\\z=\dfrac{1}{2}\end{matrix}\right.\)
\(x^2+2x+y^2-6y+4z^2-4z+11=0\\ \Rightarrow\left(x^2+2x+1\right)+\left(y^2-6y+9\right)+\left(4z^2-4z+1\right)=0\\ \Rightarrow\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)
Vì \(\left(x+1\right)^2\ge0;\left(y-3\right)^2\ge0;\left(2z-1\right)^2\ge0\) mà \(\left(x+1\right)^2+\left(y-3\right)^2+\left(2z-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-3\right)^2=0\\\left(2z-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=-1\\y=3\\z=\dfrac{1}{2}\end{matrix}\right.\)
\(x^2+y^2+4z^2+2x+2y+4z+3=0\)
\(\Leftrightarrow\)\(\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(4z^2+4z+1\right)=0\)
\(\Leftrightarrow\)\(\left(x+1\right)^2+\left(y+1\right)^2+\left(2z+1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y+1=0\\2z+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=-1\\z=-\frac{1}{2}\end{cases}}\)
Vậy....
x2 + 4x + y2 - 8y + 4z2 + 4z + 21 = 0
<=> (x2 + 4x + 4) + (y2 - 8y + 16) + (4z2 + 4z + 1) = 0
<=> (x + 2)2 + (y - 4)2 + (2z + 1)2 = 0
<=> \(\hept{\begin{cases}x+2=0\\y-4=0\\2z+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-2\\y=4\\z=-\frac{1}{2}\end{cases}}\)
x2 + 4x + y2 - 8y + 4z2 + 4z + 21 = 0
⇔ ( x2 + 4x + 4 ) + ( y2 - 8y + 16 ) + ( 4z2 + 4z + 1 ) = 0
⇔ ( x + 2 )2 + ( y - 4 )2 + ( 2z + 1 )2 = 0
⇔ \(\hept{\begin{cases}x+2=0\\y-4=0\\2z+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=4\\z=-\frac{1}{2}\end{cases}}\)