K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

Đặt\(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}=k\Rightarrow\hept{\begin{cases}x=3k-1\\y=5k+2\\z=4,5k-7\end{cases}}\)

Lại có x + z = y 

=> 3k - 1 + 4,5k - 7 = 5k + 2

=> 3k + 4,5k - 5k = 2 + 1 + 7

=> 2,5k = 10

=> k = 4

Khi đó  x = 3.4 - 1 = 11

y = 5.4 + 2 = 22

z = 4,5.4 - 7 = 11

Vậy x = 11 ; y = 22 ; z = 11

15 tháng 11 2017

\(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}\)

\(\Leftrightarrow\frac{2x+2}{6}=\frac{2y-4}{10}=\frac{2z+14}{9}\)

\(=\frac{2x+2-\left(2y-4\right)+2z+14}{6-10+9}=\frac{\left(2x+2z-2y\right)+20}{5}\)(Dãy tỉ số bằng nhau)

Ta có: \(x+z=y\Leftrightarrow2\left(x+z\right)=2y\)

\(\Leftrightarrow2x+2z=2y\Leftrightarrow2x+2z-2y=0\)

\(\Rightarrow\frac{\left(2x+2x-2y\right)+20}{5}=\frac{20}{5}=4\)

\(\Leftrightarrow\frac{2x+2}{6}=\frac{2y-4}{10}=\frac{2z+14}{9}=4\)

\(\Leftrightarrow\hept{\begin{cases}2x+2=24\\2y-4=40\\2z+14=36\end{cases}\Leftrightarrow\hept{\begin{cases}2x=22\\2y=44\\2z=22\end{cases}}\Leftrightarrow}\hept{\begin{cases}x=11\\y=22\\z=11\end{cases}}\)

Vậy \(x=z=11;y=22.\)

3 tháng 10 2016

A)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9

x/1=9 =>x=9.1=9

y/2=9=>y=9.2=18

z/3=9=>z=9.3=27

B)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

C)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

20 tháng 6 2024

A)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9

x/1=9 =>x=9.1=9

y/2=9=>y=9.2=18

z/3=9=>z=9.3=27

B)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

C)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

14 tháng 7 2017

b) \(\dfrac{3}{x+1}=\dfrac{4}{y-2}=\dfrac{5}{z-3}=\dfrac{3+4+5}{\left(1-2-3\right)+\left(x+y+z\right)}=\dfrac{12}{14}=\dfrac{6}{7}\)

Ta có: \(\dfrac{3}{x+1}=\dfrac{6}{7}\Rightarrow x+1=\dfrac{7}{2}\Rightarrow x=\dfrac{5}{2}\)

\(\dfrac{4}{y-2}=\dfrac{6}{7}\Rightarrow y-2=\dfrac{14}{3}\Rightarrow y=\dfrac{20}{3}\)

\(\dfrac{5}{z-3}=\dfrac{6}{7}\Rightarrow z-3=\dfrac{35}{6}\Rightarrow z=\dfrac{53}{6}\)

Vậy...............

26 tháng 9 2016

Ta có: \(\frac{x+1}{3}=\frac{2z+14}{9}=\frac{2x+2}{6}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x+1}{3}=\frac{2z+14}{9}=\frac{2x+2}{6}=\frac{2z+14+2x+2}{9+6}=\frac{2.\left(x+z\right)+16}{15}=\frac{2.y+16}{15}\)

                                                                            \(=\frac{y-2}{5}\)

=> (2.y + 16).5 = (y - 2).15

=> 10y + 80 = 15y - 30

=> 80 + 30 = 15y - 10y

=> 110 = 5y

=> y = 110 : 5 = 22

Thay y = 22 vào đề bài ta có: \(\frac{x+1}{3}=\frac{22-2}{5}=4\)

=> x + 1 = 4.3 = 12

=> x = 12 - 1 = 11

Lại có: x + z = y

=> 11 + z = 22

=> z = 22 - 11 = 11

Vậy x = 11; y = 22; z = 11

 

11 tháng 7 2015

\(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)\(\Leftrightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)

\(\Rightarrow\frac{3x+y-2z}{9+8-10}=\frac{14}{7}\)\(=2\)

\(\Rightarrow x=2.3=6\)

    \(y=2.8=16\)

\(z=2.5=10\)

6 tháng 10 2021

Đặt : \(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=k\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=8k\\z=5k\end{cases}}\)

Thay vào \(3x+y-2z=14\)ta có :

\(3.3k+8k-2.5k=14\)

\(9k+8k-10k=14\)

\(7k=14\)

\(k=2\)

Thay vào ta sẽ tìm được :

\(\Rightarrow\hept{\begin{cases}x=3.2\\y=8.2\\z=5.2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=6\\y=16\\z=10\end{cases}}\)

29 tháng 10 2016

1.\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\hept{\begin{cases}\frac{x}{2}.\frac{y}{3}=\frac{54}{6}=9\\\frac{x}{2}.\frac{y}{3}=\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2\end{cases}\Rightarrow\left(\frac{x}{2}\right)^2}=\left(\frac{y}{3}\right)^2=9\Rightarrow\orbr{\begin{cases}\frac{x}{2}=\frac{y}{3}=3\\\frac{x}{2}=\frac{y}{3}=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=6;y=9\\x=-6;y=-9\end{cases}}}\)

2.\(x:y:z=3:8:5\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{3x}{9}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.8=16\\z=2.5=10\end{cases}}\)