K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

dễ thấy (2x-1)2016, (y-2/5)2016 và /x+y-z/ đều lớn hơn hoặc bằng 0 => mỗi hạng tử trên đều bằng 0 rồi từ đó tính ra

22 tháng 9 2016

Do \(\left(2x-1\right)^{2016}\ge0;\left(y-\frac{2}{5}\right)^{2016}\ge0;\left|x+y-z\right|\ge0\)

Mà theo đề bài: \(\left(2x-1\right)^{2016}+\left(y-\frac{2}{5}\right)^{2016}+\left|x+y-z\right|=0\)

=> \(\begin{cases}\left(2x-1\right)^{2016}=0\\\left(y-\frac{2}{5}\right)^{2016}=0\\\left|x+y-z\right|=0\end{cases}\)=> \(\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\)=> \(\begin{cases}2x=1\\y=\frac{2}{5}\\x+y=z\end{cases}\)=> \(\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\x+y=z\end{cases}\)

=> \(\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}\)

Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{9}{10}\)

25 tháng 11 2017

ta có: \(\frac{x}{y}=\frac{z}{t}=\frac{z-2x}{2016y-2017t}=\frac{x-z}{y-t}=\frac{z-x}{2017\left(y-t\right)}\)

\(\Rightarrow2017\left(x-z\right)\left(y-t\right)=-\left(x-z\right)\left(y-t\right)\Rightarrow2017\left(y-t\right)=-\left(y-t\right)\)

\(\Rightarrow2018\left(y-t\right)=0\Rightarrow y=t\Rightarrow y^{2016}=t^{2016}\)

\(\Rightarrow y^{2016}-t^{2016}=0\)

31 tháng 1 2020

a) Ta có : 2017 - |x - 2017| = x

=> |x - 2017| = 2017 - x (1)

Điều kiện xác định : \(2017-x\ge0\Rightarrow2017\ge x\Rightarrow x\le2017\)

Khi đó (1) <=> \(\orbr{\begin{cases}x-2017=2017-x\\x-2017=-\left(2017-x\right)\end{cases}\Rightarrow\orbr{\begin{cases}2x=2017+2017\\x-2017=-2017+x\end{cases}\Rightarrow}\orbr{\begin{cases}2x=4034\\0x=0\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=2017\\x\text{ thỏa mãn }\Leftrightarrow x\le2017\end{cases}}\Rightarrow x\le2017\)

b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2016}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2016}\ge\\\left|x+y+z\right|\ge0\forall x;y;z\end{cases}0\forall y}\Rightarrow\left(2x-1\right)^{2016}+\left(y-\frac{2}{5}\right)^{2016}+\left|x+y+z\right|\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=-\frac{9}{10}\end{cases}}}\)

27 tháng 11 2018

Câu hỏi của Đỗ Minh Châu - Toán lớp 7 - Học toán với OnlineMat

Em có thể tham khảo tại link này nhé!

22 tháng 12 2017

5a.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)

b.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)

12 tháng 10 2019

Bài 1:

\(A=\frac{a+b}{b+c}.\)

Ta có:

\(\frac{b}{a}=2\Rightarrow\frac{b}{2}=\frac{a}{1}\) (1)

\(\frac{c}{b}=3\Rightarrow\frac{c}{3}=\frac{b}{1}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{b}{2}=\frac{c}{6}.\)

\(\Rightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{6}=\frac{a+b}{3}=\frac{b+c}{8}.\)

\(\Rightarrow A=\frac{a+b}{b+c}=\frac{3}{8}\)

Vậy \(A=\frac{a+b}{b+c}=\frac{3}{8}.\)

Bài 2:

a) \(\frac{72-x}{7}=\frac{x-40}{9}\)

\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)

\(\Rightarrow648-9x=7x-280\)

\(\Rightarrow648+280=7x+9x\)

\(\Rightarrow928=16x\)

\(\Rightarrow x=928:16\)

\(\Rightarrow x=58\)

Vậy \(x=58.\)

b) \(\frac{x+4}{20}=\frac{5}{x+4}\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=5.20\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=100\)

\(\Rightarrow\left(x+4\right)^2=100\)

\(\Rightarrow x+4=\pm10.\)

\(\Rightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-4\\x=\left(-10\right)-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)

Vậy \(x\in\left\{6;-14\right\}.\)

Chúc bạn học tốt!

12 tháng 10 2019

Bài 2:

a, \(\frac{72-x}{7}=\frac{x-40}{9}\)

\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)

\(\Rightarrow9.72-9.x=7.x-7.40\)

\(\Rightarrow648-9x=7x-280\)

\(\Rightarrow-9x-7x=-280-648\)

\(\Rightarrow-16x=-648\)

\(\Rightarrow x=58\)

Vậy \(x=58\)

9 tháng 4 2020

cảm ơn bạn nhiều, bạn làm gần hết bài rồi

9 tháng 4 2020

Không có gì đâu bạn

DD
11 tháng 8 2021

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)