Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài, ta có:
\(\dfrac{3x}{4}=\dfrac{y}{2}=\dfrac{3z}{5}\) và x - z = 15
\(\Rightarrow\dfrac{3x}{4}=\dfrac{y}{2}\Rightarrow6x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}\) (1)
\(\Rightarrow\dfrac{y}{2}=\dfrac{3z}{5}\Rightarrow5y=6z\Rightarrow\dfrac{y}{6}=\dfrac{z}{5}\) (2)
(1)(2) \(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{5}=\dfrac{x-z}{4-5}=-\dfrac{15}{1}=-15\)
\(\Rightarrow x=-60;y=-90;z=-75\)
\(\Rightarrow x+y+z=-225\)
1. đề bạn ghi rõ lại giúp mình đc ko r mình giải lại cho
2. Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x^2}{2.3^2}=\dfrac{y^2}{5^2}=\dfrac{2x^2-y^2}{18-25}=\dfrac{-28}{-7}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=12\)
\(\dfrac{y}{5}=4\Rightarrow y=20\)
Vậy x=12 và y=20
Bài 1:
\(pt\Leftrightarrow\dfrac{xy}{8y}-\dfrac{16}{8y}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{xy-16}{8y}=\dfrac{3}{4}\Leftrightarrow4\left(xy-16\right)=3\cdot8y\)
\(\Leftrightarrow xy-16=6y\)\(\Leftrightarrow y\left(x-6\right)=16\)
Xét Ư(16)
a/ \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{3}=0\)
\(\Leftrightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Vậy ..............
b, \(\dfrac{-12}{-37}=\dfrac{12}{37}< \dfrac{12}{36}=\dfrac{13}{39}< \dfrac{13}{38}\)
\(\Leftrightarrow\dfrac{13}{38}>\dfrac{-12}{-37}\)
a)\(\text{|}x+\dfrac{3}{4}\text{|}-\dfrac{1}{3}=0\)
=>\(\text{|}x+\dfrac{3}{4}\text{|}=\dfrac{1}{3}\)
=>\(x+\dfrac{3}{4}=-\dfrac{1}{3}\)hoặc\(x+\dfrac{3}{4}=\dfrac{1}{3}\)
=>\(x=-\dfrac{13}{12}\)hoặc\(x=-\dfrac{5}{12}\)
Vậy...
b)\(\dfrac{13}{38}\) và \(\dfrac{-12}{-37}\)
Ta có:\(\dfrac{-12}{-37}=\dfrac{12}{37}< \dfrac{12}{36}=\dfrac{1}{3}=\dfrac{13}{39}< \dfrac{13}{38}\)
=>\(\dfrac{13}{38}>\dfrac{-12}{-37}\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)
Vậy, ta lại có:
\(\dfrac{x}{3}=2\)\(\Rightarrow\) x= 3.2=6
\(\dfrac{y}{5}=2\Rightarrow\) y= 2.5=10
Vậy x-= 6 và y=10
Tick mk nha bn!
6.(\(\dfrac{-2}{3}\))+12.\(\dfrac{-2^2}{3}\)+18.\(\dfrac{-2^3}{3}\)
= -4+(-16)+(-48)
=-68
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{y+x+t}=\dfrac{y}{z+t+x}=\dfrac{y}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+z=3t\\y+z+t=3x\\z+t+x=3y\\t+x+y=3z\end{matrix}\right.\)
\(\Rightarrow x=y=z=t\)
Thay vào P ta được :
\(P=1+1+1+1=4\)
Với mọi x thuộc R Có (x^2-9)^2 \(\ge\) 0
[y-4] \(\ge\) 0
Suy ra (x^2-9)^2+[y-4] - 1 \(\ge\) -1
Xét A=-1 khi và chỉ khi (x^2-9)^2 và [y-4] đều bằng 0
Tự tính ra
Xin lỗi nhưng vì không biết nên mình phải dùng [ ] thay cho GTTĐ nhé
Xin lỗi nhiều tại mình o tìm được kí hiệu đó
Ta có: \(\left\{{}\begin{matrix}x+y=\dfrac{1}{2}\left(1\right)\\y+z=\dfrac{1}{3}\left(2\right)\\z+x=\dfrac{1}{4}\left(3\right)\end{matrix}\right.\)
Cộng (1); (2); (3) vế theo vế ta được:
\(2\left(x+y+z\right)=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\)
=> \(2\left(x+y+z\right)=\dfrac{13}{12}\)
=> \(x+y+z=\dfrac{13}{24}\)
+) Mà \(x+y=\dfrac{1}{2}\) => \(z=\dfrac{13}{24}-\dfrac{1}{2}\) = \(\dfrac{1}{24}\)
+) Mà y + z = \(\dfrac{1}{3}\) => \(\left\{{}\begin{matrix}y=\dfrac{1}{3}-\dfrac{1}{24}\\x=\dfrac{13}{24}-\dfrac{1}{3}\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=\dfrac{7}{24}\\x=\dfrac{5}{24}\end{matrix}\right.\) (TM)
Vậy \(x=\dfrac{5}{24};y=\dfrac{7}{24};z=\dfrac{1}{24}\)
P/s: Bài này có nhiều cách giải lắm!
x + y=1/2
y + z=1/3
z + x=1/4
=> x + y + y + z + z + x = 1/2 + 1/3 + 1/4 = 13/12
hay: 2(x + y + z ) = 13/12
x + y + z = 13/12 :2
x + y + z = 13/24
x = 13/24 - 1/3 = 5/24
y = 13/24 - 1/4 = 7/24
z = 13/24 - 1/2 = 1/24
Vậy ...