Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x-5y}{2}=\dfrac{7y-3z}{3}=\dfrac{5z-7x}{4}=\dfrac{21x-35y}{14}=\dfrac{35y-15z}{15}=\dfrac{15z-21x}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{3x-5y}{2}=\dfrac{7y-3z}{3}=\dfrac{5z-7x}{4}=\dfrac{21x-35y}{14}=\dfrac{35y-15z}{15}=\dfrac{15z-21x}{12}=\dfrac{21x-35y+35y-15z+15z-21x}{14+15+12}=\dfrac{0}{41}=0\)
=>3x-5y=7y-3z=5z-7x=0
3x-5y=0 <=> 3x=5y <=> \(\dfrac{x}{5}=\dfrac{y}{3}\) (1)
7y-3z=0 <=> 7y=3z <=> \(\dfrac{y}{3}=\dfrac{z}{7}\) (2)
Từ (1) và (2) suy ra \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{7}=\dfrac{x+y+z}{5+3+7}=\dfrac{17}{15}\)
=>\(x=\dfrac{17}{15}.5=\dfrac{17}{3};y=\dfrac{17}{15}.3=\dfrac{17}{5};z=\dfrac{17}{15}.7=\dfrac{119}{15}\)
Vậy ...........
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x-5y}{2}=\frac{7y-3z}{3}=\frac{5z-7x}{4}\)
\(\Leftrightarrow \frac{7(3x-5y)}{14}=\frac{5(7y-3z)}{15}=\frac{3(5z-7x)}{12}=\frac{7(3x-5y)+5(7y-3z)+3(5z-7x)}{14+15+12}=0\)
Suy ra:
\(\left\{\begin{matrix} 3x=5y\\ 7y=3z\\ 5z=7x\end{matrix}\right.\Leftrightarrow 21x=35y=15z\)
\(\Leftrightarrow \frac{x}{\frac{1}{21}}=\frac{y}{\frac{1}{35}}=\frac{z}{\frac{1}{15}}=\frac{x+y+z}{\frac{1}{21}+\frac{1}{35}+\frac{1}{15}}=119\) (ADTCDTSBN)
\(\Rightarrow \left\{\begin{matrix} x=\frac{17}{3}\\ y=\frac{17}{5}\\ z=\frac{119}{15}\end{matrix}\right.\)
TA CÓ \(\frac{3x-5y}{2}=\frac{7y-3z}{3}=\frac{5z-7x}{4}\)\(=\frac{21x-35y}{14}=\frac{35y-15z}{15}=\frac{15z-21x}{12}\)=\(\frac{21x-35+35y-15z+15z-21x}{14+15+12}=\frac{0}{41}=0\)
=> \(\hept{\begin{cases}3x-5y=0\\7y-3z=0\\5z-7x=0\end{cases}\left(=\right)\hept{\begin{cases}3x=5y\\7y=3z\\5z=7x\end{cases}\left(=\right)\hept{\begin{cases}\frac{x}{5}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{7}\\\frac{z}{7}=\frac{x}{5}\end{cases}}}}\)
=> \(\frac{x}{5}=\frac{y}{3}=\frac{z}{7}=\frac{x+y+z}{5+3+7}=\frac{17}{15}\)
=>\(\hept{\begin{cases}x=\frac{17}{3}\\y=\frac{17}{5}\\z=\frac{119}{15}\end{cases}}\)
ai trả lời được câu này mình cho 5 k
tìm x, biết
10+11+12+13+.....x=5106
Đặt \(\dfrac{x}{4}=\dfrac{y}{5}=k\)
Ta có: \(\dfrac{x}{4}=k\) \(\Rightarrow\) \(x=4k\) (1)
\(\dfrac{y}{5}=k\) \(\Rightarrow\) \(y=5k\) (2)
Mà theo đề bài ta có \(xy=80\)
Thế (1) và (2) vào: \(4k.5k=80\\\)
\(\Rightarrow20k^2=80\)
\(\Rightarrow k^2=80:20=4\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=2\) hoặc \(k=-2\)
Ta có: \(\dfrac{x}{4}=\dfrac{y}{5}=2\)
\(\dfrac{x}{4}=2\Rightarrow x=2.4=8\)
\(\dfrac{y}{5}=2\Rightarrow x=2.5=10\)
Có \(\dfrac{x}{4}=\dfrac{y}{5}=-2\)
\(\dfrac{x}{4}=-2\Rightarrow x=\left(-2\right).4=-8\)
\(\dfrac{y}{5}=-2\Rightarrow y=\left(-2\right).5=-10\)
Vậy có 2 cặp \(\left(x,y\right)=\left(8,10\right);\left(-8,-10\right)\)
a, Ta có: \(2x=3y;7z=5y\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{2};\dfrac{z}{5}=\dfrac{y}{7}\)
\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
\(\Rightarrow\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\) và \(3x-7y+5z=30\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.21=42\\y=2.14=28\\z=2.10=20\end{matrix}\right.\)
Vậy \(x=42;y=28;z=20\)
b, Ta có: \(x:y:z=3:5:\left(-2\right)\)
\(\Rightarrow5x:y:3z=15:5:\left(-6\right)\) và \(5x-y+3z=-16\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{5x}{15}=\dfrac{y}{5}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5+\left(-6\right)}=\dfrac{-16}{4}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=-4.3=-12\\y=-4.5=-20\\z=-4.\left(-2\right)=8\end{matrix}\right.\)
Vậy \(x=-12;y=-20;z=8\)
Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\)
\(\Rightarrow\) \(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)
+) \(\left[{}\begin{matrix}\frac{7x+5y}{7z+5t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\\\frac{3x-7y}{3z-7t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\end{matrix}\right.\)
\(\Rightarrow\frac{x}{y}=\frac{z}{t}\)
Vậy từ \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\)\(\Rightarrow\frac{x}{y}=\frac{z}{t}\)
Tớ không biết trình bày có đúng không. Chúc bạn học tốt
a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)
Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)
\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)
\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)
\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)
Xin lỗi mình chỉ làm được câu a)
a: 3x=2y nên x/2=y/3
7y=5z nên y/5=z/7
=>x/10=y/15=z/21
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
=>x=20; y=30; z=42
b: 2x=3y=5z
nên x/15=y/10=z/6
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
=>x=75; y=50; z=30
d: Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
2x^2+2y^2-3z^2=-100
=>18k^2+32k^2-3*25k^2=-100
=>25k^2=100
=>k^2=4
TH1: k=2
=>x=6; y=8; z=10
TH2: k=-2
=>x=-6; y=-8; z=-10
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{3x-5y}{2}=\frac{7y-3z}{3}=\frac{5z-7x}{4}\)
\(\Leftrightarrow \frac{7(3x-5y)}{14}=\frac{5(7y-3z)}{15}=\frac{3(5z-7x)}{12}=\frac{7(3x-5y)+5(7y-3z)+3(5z-7x)}{14+15+12}=0\)
\(\Rightarrow \left\{\begin{matrix} 3x-5y=0\\ 7y-3z=0\\ 5z-7x=0\end{matrix}\right.\)
\(\Leftrightarrow \frac{x}{5}=\frac{y}{3}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{7}=\frac{x+y+z}{5+3+7}=\frac{17}{15}\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{17}{3}\\ y=\frac{17}{5}\\ z=\frac{119}{15}\end{matrix}\right.\)
Tau méc cô mi đi hỏi