Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)(1)
\(\frac{y}{z}=\frac{5}{7}\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)(2)
Từ (1)(2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
đến đây tự làm tiếp đc rồi
b) \(2x=3y=5z\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
rồi đến đây cx ez rồi
2x=3y=5z <=>\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{3+5-2}=\frac{95}{6}\)
Từ đó bạn có thế => x,y,z=
2x = 3y = 5z
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=15.5=75\\y=5.10=50\\z=6.5=30\end{cases}}\)
Vậy x = 75 ; y = 50 và z = 30
@@ Học tốt@@
## Chiyuki Fujito
\(2x=3y=5z\)
\(\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)và \(x-y+z=-33\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=-\frac{33}{11}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=-3\\\frac{y}{10}=-3\\\frac{z}{6}=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=-3.15=-45\\y=-3.10=-30\\z=-3.6=-18\end{cases}}\)
Vậy \(x=-45;y=-30;z=-18\)
\(2x=3y=5z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)
=> x = (-3).15 = -45
y = (-3).10 = -30
z = (-3).6 = -18
\(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c dãy tỉ số = nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{31}{30}}=-\frac{990}{31}\)
\(\frac{x}{\frac{1}{2}}=-\frac{990}{31}\Rightarrow x=-\frac{495}{31}\)
\(\frac{y}{\frac{1}{3}}=-\frac{990}{31}\Rightarrow y=-\frac{330}{31}\)
\(\frac{z}{\frac{1}{5}}=-\frac{990}{31}\Rightarrow z=-\frac{198}{31}\)
Vậy ...
Có: \(2x=3y=5z\)
=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{-33}{31}\)
=> \(\begin{cases}x=-\frac{495}{31}\\y=-\frac{330}{31}\\z=-\frac{198}{31}\end{cases}\)
a) 2x = 3y = 5z
=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số = nhau , ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y+z}{3+5+2}=\frac{-33}{10}\)
=> x = 3.(-33/10) = -99/10
y = 5.(-33/10) = -165/10
z = 2.(-33/10) = -66/10
Từ 2x=3y=5z => x/15=y/10=z/6
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/15=y/10=z/6=x+y+z/15+10+6=95/19=5
=> x=5.15=75
y=5.10=50
z=5.6=30
kết quả đúng 100% ạ
Ta có
.2x = 3y = 5z = 2x / 30 = 3y / 30 = 5z / 30 = x / 15 = y / 10 = z / 6
áp dụng tính chất dãy tỉ số bằng nhau ta có
x / 15 = y / 10 = z / 6 = x + y - x / 15 + 10 - 6 =95 / 19 = 5
x / 15 = 5 \(\Rightarrow\)x = 5 . 15 = 75
y / 10 = 5 \(\Rightarrow\)x = 5 . 10 = 50
z / 6 = 5 \(\Rightarrow\)x = 5 . 6 = 30
Xét \(x+y=z+95\Rightarrow x+y-z=95\) (*)
Ta có:
\(2x=3y=5z\)
\(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Từ (*) và áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
Vậy \(\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)