Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x:y:z =1:2:3 =>\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
=> \(\frac{x+y+z}{1+2+3}=\frac{x^2+y^2+z^2}{^{1^2+2^2+3^2}}=\frac{1400}{14}=100\)
=>\(^{x^2=100\cdot1^2=100=>x=10}\)
=>\(y^2=100\cdot2^2=400=>y=20\)
=>\(z^2=100\cdot3^2=900=>z=30\)
Vậy x=10, y=20 và z=30
đừng nên dựa vào trang này quá
bài trên thuộc dạng SGK , SBT mà không làm được à
x : y : z = 2 : 3 : 5
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
=> \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2-y^2+z^2}{4-9+25}=\frac{80}{20}=4\)
=> x2 = 16 => x thuộc {-4; 4}
y2 = 36 => y thuộc {-6; 6}
z2 = 100 => z thuộc {-10; 10}
Bạn Kuri chắc chắn với câu trả lời này chứ, tại mình thấy cách làm trông kì kì ?
\(x:y:z=3:4:5\Leftrightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=2.\left(3k\right)^2+2.\left(4k\right)^2-3.\left(5k\right)^2=18k^2+32k^2-75k^2=100\)
\(\Leftrightarrow-25k^2=-100\Leftrightarrow k^2=4\Leftrightarrow k=2\Rightarrow x=6;y=8;z=10\)
Miu Ti làm vớ vẩn
a)Từ \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}=\frac{5z^2-3x^2-2y^2}{125-27-32}=\frac{594}{66}=9\)
\(\)\(\Rightarrow3x^2=9.27=243\Rightarrow x^2=\frac{243}{3}=81\Rightarrow x\in\left\{9;-9\right\}\)
\(2y^2=9.32=288\Rightarrow y^2=\frac{288}{2}=144\Rightarrow y\in\left\{12;-12\right\}\)
\(5z^2=9.125=1125\Rightarrow z^2=\frac{1125}{5}=225\Rightarrow z\in\left\{15;-15\right\}\)
Vậy..............
b)Từ \(x+y=3\left(x-y\right)\Rightarrow3x-3y=x+y\Rightarrow3x-x=y+3y\Rightarrow2x=4y\)
\(\Rightarrow2x=2.2y\Rightarrow x=2y\Rightarrow\frac{x}{y}=2\)
Mà \(x+y=\frac{x}{y}\) (theo đề)
\(\Rightarrow x+y=2\Rightarrow2y+y=2\Rightarrow3y=2\Rightarrow y=\frac{2}{3}\)
khi đó \(x=2y=2.\frac{2}{3}=\frac{4}{3}\)
Vậy x=4/3;y=2/3
a/ Ta có x:y:z=3:4:5
=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5\cdot z^2-3\cdot x^2-2\cdot y^2}{5\cdot5^2-3.3^2-2\cdot4^2}=\frac{594}{66}=9\)
=> x=9.3=27
y=9*4=36
z=9*5=45
b/ Từ từ rồi tui làm
b) 4x = 7y và \(x^2+y^2=260\)
Ta có: \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)
Đặt \(\frac{x}{7}=\frac{y}{4}=k\Rightarrow x=7k;\)\(y=4k\)
\(x^2+y^2=49k^2+16k^2=65k^2=260\)
\(\Rightarrow k^2=4\Rightarrow k=+-2\)
Với k = 2 thì: \(\frac{x}{7}=2\Rightarrow x=7.2=14\)
\(\frac{y}{4}=2\Rightarrow y=4.2=8\)
Với k = (-2) thì: \(\frac{x}{7}=-2\Rightarrow x=7.\left(-2\right)=-14\)
\(\frac{y}{4}=-2\Rightarrow x=4.\left(-2\right)=-8\)
Kết luận : \(x=+-14\)
\(y=+-8\)
câu 1:Theo đề ta có: \(\frac{x}{2}=\frac{y}{4}\) và x2.y2= 64
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{4}\)<=> \(\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{x^2}{4}=\frac{y^2}{16}\)
Đặt \(\frac{x^2}{4}=\frac{y^2}{16}=k\)
=> x2 =4k
y2= 16k
thay vào : x2.y2= 64
Ta có: 4k.16k= 64
64.k2 = 64
=> k = -1 ; 1
=> x2= 4.k => x2= -4; 4=> x= 2;-2
tương tự tìm y
Do x:y:z=a:b:c Nên nếu x=ka thì y=kb; z=kc
Khi đó: (x+y+z)2=[k(a+b+c)]2=k2 (x2+y2+z2)=k2(a2+b2+c2)=k2 ⇒(x+y+z)2=x2+y2+z2 ( đpcm)